Background: Blood nerve barrier (BNB) participates in the development of neuropathic pain. AQP1 is involved in peripheral pain perception and is negatively correlated with HIF-1α phenotype, which regulates endothelial permeability. However, the role of HIF-1α-AQP1-mediated BNB dysfunction in Chronic Postsurgical Pain (CPSP) has not been reported.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2023
Chronic postsurgical pain (CPSP) is a serious postoperative complication with high incidence, and its pathogenesis involves neuroimmune interactions and the breakdown of the blood-spinal cord barrier (BSCB), the decreased level of adheren junction (AJ)-related proteins is an important cause of BSCB injury. Vascular endothelial-cadherin (VE-cadherin) and p120 catenin (p120) constitute the endothelial barrier adheren junction. The Src/p120/VE-cadherin pathway is involved in the regulation of the endothelial barrier function.
View Article and Find Full Text PDFPurpose: Caveolae (CAV) are an invaginated microcapsule with the shape of Ω on the surface of the cell membrane. Caveolin-1 (CAV-1) is involved in neuropathic pain, and adenosine monophosphate (AMP)-exchange protein directly activated by cAMP1 (EPAC-1) is a potential therapeutic target for chronic pain. However, whether EPAC-1 promotes chronic postsurgical pain (CPSP) through CAV-1 has not been reported.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
February 2022
Pulmonary ischemia-reperfusion can cause severe dysfunction of alveolar epithelium and alveolar cells. Drugs such as propofol have a protective effect on lung ischemia-reperfusion, but this protective mechanism is not stable and requires other factors such as nucleosides. The purpose of this article is to study the protective mechanism of propofol on lung ischemia-reperfusion injury by regulating the expression of BecliN-1 by miR-30b.
View Article and Find Full Text PDFBackground: Epstein-Barr virus (EBV) DNA detection in the nasopharynx is considered a biomarker for nasopharyngeal carcinoma (NPC). We evaluated its performance as a reflex test to triage EBV seropositives within an NPC screening program in China.
Methods: The study population was embedded within an ongoing NPC screening trial and included 1111 participants who screened positive for anti-EBV VCA (antibodies against EBV capsid antigens)/EBNA1 (EBV nuclear antigen1)-IgA antibodies (of 18 237 screened).
Chronic postsurgical pain (CPSP) has a high incidence, but the underlying mechanisms remain elusive. Previous studies have indicated that caveolin-1 (Cav-1) plays a notable role in pain modulation. To study the role of Cav-1 in CPSP in the present study, a rat model of skin/muscle incision and retraction (SMIR) was established.
View Article and Find Full Text PDFChronic postsurgical pain (CPSP) has a high incidence, but the underlying mechanism is not well understood. Accumulating evidence has suggested that central sensitization is the main mechanism of pain. To study the role of p120 in CPSP, a skin/muscle incision and retraction (SMIR) model was established, and immunofluorescence staining and western blotting were performed to analyze the expression of p120 in the spinal cord and dorsal root ganglion (DRG).
View Article and Find Full Text PDFBackground: Chimeric antigen receptor T cells (CAR-T cells) therapy has been well recognized for treating B cell-derived malignancy. However, the efficacy of CAR-T cells against solid tumors remains dissatisfactory, partially due to the heterogeneity of solid tumors and T cell exhaustion in tumor microenvironment. PD-L1 is up-regulated in multiple solid tumors, resulting in T cell exhaustion upon binding to its receptor PD-1.
View Article and Find Full Text PDFChronic postsurgical pain (CPSP) is a chronic pain state that is difficult to be treated clinically. A series of complicated changes have been produced from nociceptive stimulation to the occurrence and development of postsurgical pain. Many mechanisms remain unclear.
View Article and Find Full Text PDFPurpose: Postoperative pain is a common clinical problem. In this study, we aimed to investigate the role of protein kinase C βII (PKCβII) in the progression of postoperative pain following skin/muscle incision and retraction (SMIR) surgery.
Materials And Methods: SMIR postoperative pain model was established in rats, akin to a clinical procedure.
Animal models used to evaluate efficacies of immune checkpoint inhibitors are insufficient or inaccurate. We thus examined two xenograft models used for this purpose, with the aim of optimizing them. One method involves the use of peripheral blood mononuclear cells and cell line-derived xenografts (PBMCs-CDX model).
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2018
A field experiment was carried out to study the effects of balanced fertilization on growth and development, yield, fruit quality and mineral content in 'Huang-guan' pear to provide a theoretical basis for the reasonable level of fertilization in pear orchards. Four treatments were arranged with 12-year old 'Huang-guan' pear trees from the same orchard: conventional fertilization (CK), low levels of N, PO and high level of S (T), medium levels of N, PO and S (T), high levels of N, PO and low level of S (T). The results showed that different treatments had little effect on the growth and development of current-year branch and leaves in the first year.
View Article and Find Full Text PDFThe aim of the current study was to assess the effect of pinacidil activation of ATP‑sensitive potassium (KATP) channels prior to skin/muscle incision and retraction (SMIR) surgery on peripheral and central sensitization, and investigate molecular interferential targets for preventive analgesia. Male Sprague-Dawley rats were randomly assigned to one of the following five groups: Control, incision (sham surgery), incision plus retraction (SMIR) group, SMIR plus pinacidil (pinacidil) group and the SMIR plus pyrrolidine dithiocarbamate (PDTC) group. The rats in the pinacidil and PDTC groups were intraperitoneally injected with pinacidil or PDTC, respectively, prior to the SMIR procedure.
View Article and Find Full Text PDFThe function of guanine nucleotide exchange protein conversion factor (Epac1) in regenerating nerves, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities has been recognized; however, few studies have addressed the potential role of Epac1 in controlling chronic postoperative pain. Using a rat model of skin/muscle incision and retraction (SMIR), our study tested the hypothesis that increased Epac1 signaling is a factor in postoperative chronic pain. Rats were randomly divided into normal, sham operation, SMIR, SMIR + Epac1 siRNA (Epac1 inhibitor), and normal + 8-pCPT (Epac1 agonist) groups.
View Article and Find Full Text PDFBackground: The mouse is an organism that is widely used as a mammalian model for studying human physiology or disease, and the development of immunodeficient mice has provided a valuable tool for basic and applied human disease research. Following the development of large-scale mouse knockout programs and genome-editing tools, it has become increasingly efficient to generate genetically modified mouse strains with immunodeficiency. However, due to the lack of a standardized system for evaluating the immuno-capacity that prevents tumor progression in mice, an objective choice of the appropriate immunodeficient mouse strains to be used for tumor engrafting experiments is difficult.
View Article and Find Full Text PDFCurcumin is a major component of turmeric and reportedly has anti-inflammatory and anti-oxidant effects. Neuroinflammation has been recognized to play an important role in the pathogenesis of various diseases in the central nervous system. Here we investigated the anti-nociceptive and anti-neuroinflammatory effect of curcumin on arthritic pain in rats.
View Article and Find Full Text PDFAlthough adenosine triphosphate-sensitive potassium (KATP) channels have been proven to be involved in regulating postoperative pain, the underlying mechanism remains to be investigated. In this study, we aimed to determine the role of spinal KATP channels in the control of mechanical hypersensitivity in a rat pain model, in which rats were subjected to skin/muscle incision and retraction (SMIR) surgery, as well as in LPS-stimulated astrocytes. The results showed that KATP channel subunits Kir6.
View Article and Find Full Text PDFBackground: Alterations in adenosine triphosphate-sensitive potassium (KATP) activity and expression under changing physiological conditions are important adaptive and protective mechanisms. KATP subunit expression is also altered in neuropathic pain; whether these changes are adaptive or deleterious is unclear. We therefore established a skin/muscle incision and retraction (SMIR) rat model of postoperative pain and examined the relationship between pain sensitization and changes in KATP subunit expression.
View Article and Find Full Text PDFThe aim of the present study was to evaluate the influence of the microenvironment around an incision site, on peripheral and central sensitization. The effects of pinacidil activation of ATP-sensitive potassium (KATP) channels prior to skin/muscle incision and retraction (SMIR) surgery were assessed. A total of 24 male Sprague Dawley rats were randomly assigned to four groups: Control, sham (incision operation), SMIR (incision plus retraction 1 h after the skin/muscle incision) and pinacidil (SMIR plus pinacidil).
View Article and Find Full Text PDFSuccessful expansion of hematopoietic stem cells (HSCs) would benefit the use of HSC transplants in the clinic. Angiopoietin-like 7 promotes the expansion of hematopoietic stem and progenitor cells (HSPC) in vitro and ex vivo. However, the impact of loss of Angptl7 on HSPCs in vivo has not been characterized.
View Article and Find Full Text PDFBackground: Anti-apoptotic mechanism for cell protection on reperfusion may provide a new method to reduce reperfusion injury.
Aims: The aim of the present study is to explore the effect of mitochondrial ATP sensitive potassium channel (Mito-KATP) opener diazoxide (DZ) preconditioning on hypoxia/reoxygen (H/R) injury of rat myocardium microvascular endothelial cells (MMECs) against apoptosis and relation of PI3K/Akt pathway.
Study Design: Animal experimentation.
Genetic variation in the genome of a given species is the basis for natural selection and genetic improvement through selective breeding. We applied 29 microsatellites located on 11 linkage groups to study genetic variation in 276 accessions of J. curcas collected from nine locations in five countries in South America, Asia and Africa to initiate a breeding program.
View Article and Find Full Text PDFUnlabelled: Lumbar disc herniation (LDH) is a major cause of sciatica, but the underlying mechanisms are not well understood. Chemokine CCL2 has been implicated to play a vital role in the neuroinflammation and central sensitization after spinal nerve ligation. Here we investigated the expression and the role of CCL2 and its receptor CCR2 in LDH-induced pain.
View Article and Find Full Text PDFNerve injury and inflammation can both induce neuropathic pain via the production of pro-inflammatory cytokines. In the process, G protein-coupled receptors (GPCRs) were involved in pain signal transduction. GPCR kinase (GRK) 6 is a member of the GRK family that regulates agonist-induced desensitization and signaling of GPCRs.
View Article and Find Full Text PDFBackground: Neuropathic pain in the trigeminal system is frequently observed in clinic, but the mechanisms involved are largely unknown. In addition, the function of immune cells and related chemicals in the mechanism of pain has been recognized, whereas few studies have addressed the potential role of chemokines in the trigeminal system in chronic pain. The present study was undertaken to test the hypothesis that chemokine C-C motif ligand 2 (CCL2)-chemokine C-C motif receptor 2 (CCR2) signaling in the trigeminal nucleus is involved in the maintenance of trigeminal neuropathic pain.
View Article and Find Full Text PDF