Understanding how extracellular matrix (ECM) stiffness and biochemical factors such as TGF-β affect cell behaviour is critical for elucidating mechanisms underlying several pathologic conditions such as tissue fibrosis and cancer metastasis. This study investigates the effects of varying collagen substrate concentration and consequently varying stiffness conditions along with TGF-β treatment on the morphology, nanomechanical properties, and gene expression of normal human lung fibroblasts (NHLF). Our results reveal that increased substrate stiffness leads to more elongated cell morphology, decreased cellular stiffness, and significant alterations in gene expression related to cytoskeletal organization and myofibroblast activation genes.
View Article and Find Full Text PDFWhen testing biological samples with atomic force microscopy (AFM) nanoindentation using pyramidal indenters, Sneddon's equation is commonly used for data processing, approximating the indenter as a perfect cone. While more accurate models treat the AFM tip as a blunted cone or pyramid, these are complex and lack a direct relationship between applied force and indentation depth, complicating data analysis. This paper proposes a new equation derived from simple mathematical processes and physics-based criteria.
View Article and Find Full Text PDFSarcomas, rare malignant tumors of mesenchymal origin, are often underdiagnosed and have face diagnostic ambiguities and limited treatment options. The main objective of this study was to define the nanomechanical and biophysical properties of sarcoma cells, particularly examining how the cytoskeleton's remodeling and related cellular processes such as cell migration and invasion in response to environmental stimuli due to collagen content. Utilizing one murine fibrosarcoma and one osteosarcoma cell line we employed atomic force microscopy, immunostaining, advanced image processing, in vitro cellular assays, and molecular techniques to investigate cells' cytoskeleton remodeling in response to varying collagen concentration.
View Article and Find Full Text PDFChanges in the structural properties of the skin due to collagen alterations are an important factor in diabetic skin complications. Using a combination of photonic methods as an optic diagnostic tool, we investigated the structural alteration in rat dermal collagen I in diabetes, and after short-term l-arginine treatment. The multiplex approach shows that in the early phase of diabetes, collagen fibers are partially damaged, resulting in the heterogeneity of fibers, e.
View Article and Find Full Text PDFIntroduction And Hypothesis: Surgeon kinematics play a significant role in the prevention of patient injury. We hypothesized that elbow extension and ulnar wrist deviation are associated with bladder injury during simulated midurethral sling (MUS) procedures.
Methods: We used motion capture technology to measure surgeons' flexion/extension, abduction/adduction, and internal/external rotation angular time series for shoulder, elbow, and wrist joints.
Midkine (MDK) is a multifunctional secreted protein that can act as a cytokine or growth factor regulating multiple signaling pathways and being implicated in fundamental cellular processes, such as survival, proliferation, and migration. Although its expression in normal adult tissues is barely detectable, MDK serum levels are found to be elevated in several types of cancer, including hepatocellular carcinoma (HCC). In this review, we summarize the findings of recent studies on the role of MDK in HCC diagnosis and progression.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Recent studies in medical image segmentation involve new automatic approaches where active learning models are useful with less training samples. Presence of homogenous and heterogenous intensities for a single anatomical structure in pediatric musculoskeletal MR images affects the accuracy in terms of segmentation and classification of labels. This study addresses the homogeneity in intensity issues and introduces a new pre-training pipeline framework of Multi-level Otsu thresholding image as separate channel for 3D UNet model training.
View Article and Find Full Text PDFPurpose: Our objective was to understand the cognitive strategies used by surgeons to mentally visualize navigation of a surgical instrument through blind space.
Methods: We conducted semi-structured interviews with 15 expert and novice surgeons following simulated retropubic trocar passage on 3D-printed models of pelvises segmented from preop MRIs. Midurethral sling surgery involves blind passage of a trocar among the urethra, bladder, iliac vessels, and bowel while relying primarily on haptic feedback from the suprapubic bone (SPB) for guidance.
Atomic force microscopy (AFM) is a powerful tool for characterizing biological materials at the nanoscale utilizing the AFM nanoindentation method. When testing biological materials, spherical indenters are typically employed to reduce the possibility of damaging the sample. The accuracy of determining Young's modulus depends, among other factors, on the calibration of the indenter, i.
View Article and Find Full Text PDFAs metastasis is responsible for most cancer-related deaths, understanding the cellular and molecular events that lead to cancer cell migration and invasion will certainly provide insights into novel anti-metastatic therapeutic targets. Fascin-1 is an actin-bundling protein fundamental to all physiological or pathological processes that require cell migration. It is responsible for cross-linking actin microfilaments during the formation of actin-rich cellular structures at the leading edge of migrating cells such as filopodia, lamellipodia and invadopodia.
View Article and Find Full Text PDFAims: To compare pharmacokinetics (PK) and safety of heat-stable inhaled (IH) oxytocin with intramuscular (IM) oxytocin in women in third stage of labour (TSL), the primary endpoint being PK profiles of oxytocin IH and secondary endpoint of safety.
Methods: A phase 1, randomized, cross-over study was undertaken in 2 UK and 1 Australian centres. Subjects were recruited into 2 groups: Group 1, women in TSL; Group 2, nonpregnant women of childbearing potential (Cohort A, combined oral contraception; Cohort B, nonhormonal contraception).
A recent U.S. Food and Drug Administration report presented the currently available scientific information related to biological response to metal implants.
View Article and Find Full Text PDFIntroduction And Hypothesis: Retropubic midurethral sling surgery involves the blind passage of trocars near vital organs. We quantified the proximity of surgeons' mental representation of trocar position relative to actual position using a pelvis simulation platform. We hypothesized that novice surgeons, compared with experts, would estimate the trocar's location to be further from the actual location.
View Article and Find Full Text PDFThe Troodos mountains in Cyprus are a hotspot of plant diversity and cultural heritage. However, the traditional uses of medicinal and aromatic plants (MAPs), a significant aspect of local culture, have not been thoroughly studied. The aim of this research was to document and analyze the traditional uses of MAPs in Troodos.
View Article and Find Full Text PDFCancer progression is closely related to changes in the structure and mechanical properties of the tumor microenvironment (TME). In many solid tumors, including pancreatic cancer, the interplay among the different components of the TME leads to a desmoplastic reaction mainly due to collagen overproduction. Desmoplasia is responsible for the stiffening of the tumor, poses a major barrier to effective drug delivery and has been associated with poor prognosis.
View Article and Find Full Text PDFAtomic Force Microscopy (AFM) is a powerful tool enabling the mechanical characterization of biological materials at the nanoscale. Since biological materials are highly heterogeneous, their mechanical characterization is still considered to be a challenging procedure. In this paper, a new approach that leads to a 3-dimensional (3D) nanomechanical characterization is presented based on the average Young's modulus and the AFM indentation method.
View Article and Find Full Text PDFMeasuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis.
View Article and Find Full Text PDFHigh-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability patterned by distinct mutational processes, tumour heterogeneity and intraperitoneal spread. Immunotherapies have had limited efficacy in HGSOC, highlighting an unmet need to assess how mutational processes and the anatomical sites of tumour foci determine the immunological states of the tumour microenvironment. Here we carried out an integrative analysis of whole-genome sequencing, single-cell RNA sequencing, digital histopathology and multiplexed immunofluorescence of 160 tumour sites from 42 treatment-naive patients with HGSOC.
View Article and Find Full Text PDFNano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects.
View Article and Find Full Text PDFWhen testing soft biological samples using the Atomic Force Microscopy (AFM) nanoindentation method, the force-indentation data is usually fitted to the equations provided by Hertzian mechanics. Nevertheless, a significant question remains up to date; is this a correct approach from a mathematical perspective? Biological materials are heterogeneous, so 'what do we calculate' when using a classic fitting approach? In this paper, conclusive answers to the abovementioned questions are provided. In addition, a new tool for the nanomechanical characterization of biological samples, the depth-dependent mechanical properties maps, is introduced.
View Article and Find Full Text PDFBackground: Partners from an NGO, academia, industry and government applied a tool originating in the private sector - Quantitative Decision Making (QDM) - to rigorously assess whether to invest in testing a global health intervention. The proposed NEWBORN study was designed to assess whether topical emollient therapy with sunflower seed oil in infants with very low birthweight <1500 g in Kenya would result in a significant reduction in neonatal mortality compared to standard of care.
Methods: The QDM process consisted of prior elicitation, modelling of prior distributions, and simulations to assess Probability of Success (PoS) via assurance calculations.
We explore the use of deep convolutional neural networks (CNNs) trained on overhead imagery of biomass sorghum to ascertain the relationship between single nucleotide polymorphisms (SNPs), or groups of related SNPs, and the phenotypes they control. We consider both CNNs trained explicitly on the classification task of predicting whether an image shows a plant with a reference or alternate version of various SNPs as well as CNNs trained to create data-driven features based on learning features so that images from the same plot are more similar than images from different plots, and then using the features this network learns for genetic marker classification. We characterize how efficient both approaches are at predicting the presence or absence of a genetic markers, and visualize what parts of the images are most important for those predictions.
View Article and Find Full Text PDFBackground: Vital injuries during midurethral sling surgery are avoided by maintaining constant trocar contact with bone, and yet this is challenging for a teaching surgeon to monitor during this blind procedure. We modified a retropubic trocar with a load cell to distinguish on-bone and off-bone movement and tested it on a midurethral sling surgery 3-dimensional surgery simulator.
Methods: Two experts and 3 novice surgeons performed retropubic trocar passage on the physical pelvic floor model using the modified trocar.