Publications by authors named "Stylianos Z Karoulias"

Objective: Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell-derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system.

View Article and Find Full Text PDF

A disintegrin and metalloprotease with thrombospondin type I motifs (ADAMTS) proteases are secreted metalloproteinases that play key roles in the formation, homeostasis and remodeling of the extracellular matrix (ECM). The substrate spectrum of ADAMTS proteases can range from individual ECM proteins to entire families of ECM proteins, such as the hyalectans. ADAMTS-mediated substrate cleavage is required for the formation, remodeling and physiological adaptation of the ECM to the needs of individual tissues and organ systems.

View Article and Find Full Text PDF

Secreted a disintegrin-like and metalloprotease with thrombospondin type 1 motif (ADAMTS) proteases play crucial roles in tissue development and homeostasis. The biological and pathological functions of ADAMTS proteases are determined broadly by their respective substrates and their interactions with proteins in the pericellular and extracellular matrix. For some ADAMTS proteases, substrates have been identified and substrate cleavage has been implicated in tissue development and in disease.

View Article and Find Full Text PDF

Weill-Marchesani syndrome (WMS) is a rare genetic disorder that affects the musculoskeletal system, the eye, and the cardiovascular system. Individuals with WMS present with short stature, joint contractures, thick skin, microspherophakia, small and dislocated lenses, and cardiac valve anomalies. WMS can be caused by recessive mutations in ADAMTS10 (WMS 1), ADAMTS17 (WMS 4), or LTBP2 (WMS 3), or by dominant mutations in fibrillin-1 (FBN1) (WMS 2); all genes encode secreted extracellular matrix (ECM) proteins.

View Article and Find Full Text PDF

Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level.

View Article and Find Full Text PDF