IEEE Trans Pattern Anal Mach Intell
December 2022
Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to the best of our knowledge, there is no method which can produce render-ready high-resolution 3D faces from "in-the-wild" images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this paper, we introduce the first method that is able to reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2022
A lot of work has been done towards reconstructing the 3D facial structure from single images by capitalizing on the power of deep convolutional neural networks (DCNNs). In the recent works, the texture features either correspond to components of a linear texture space or are learned by auto-encoders directly from in-the-wild images. In all cases, the quality of the facial texture reconstruction is still not capable of modeling facial texture with high-frequency details.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2021
Three-dimensional morphable models (3DMMs) are powerful statistical tools for representing the 3D shapes and textures of an object class. Here we present the most complete 3DMM of the human head to date that includes face, cranium, ears, eyes, teeth and tongue. To achieve this, we propose two methods for combining existing 3DMMs of different overlapping head parts: (i).
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2018
3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and are among the state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial datasets have been collected containing both neutral as well as expressive faces. However, all datasets are captured under controlled conditions.
View Article and Find Full Text PDF