In the present study, a buckling analysis of laminated composite rectangular plates reinforced with multiwalled carbon nanotube (MWCNT) inclusions is carried out using the finite element method (FEM). The rule of mixtures and the Halpin-Tsai model are employed to calculate the elastic modulus of the nanocomposite matrix. The effects of three critical factors, including random dispersion, waviness, and agglomeration of MWCNTs in the polymer matrix, on the material properties of the nanocomposite are analyzed.
View Article and Find Full Text PDFIn this study, a computational procedure for the investigation of the vibration behavior of laminated composite structures, including graphene inclusions in the matrix, is developed. Concerning the size-dependent behavior of graphene, its mechanical properties are derived using nanoscopic empiric equations. Using the appropriate Halpin-Tsai models, the equivalent elastic constants of the graphene reinforced matrix are obtained.
View Article and Find Full Text PDF