Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions containing sulfate fertilizers. Moreover, several other sulfur (S)-containing compounds are provided through foliar application, including the S metabolites hydrogen sulfide, glutathione, cysteine, methionine, S-methylmethionine, and lipoic acid.
View Article and Find Full Text PDFBroccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and assimilation has been demonstrated. Towards an efficient agronomic fortification of broccoli florets, the working questions were whether we could overcome this competition by exogenously applying the S-containing amino acids cysteine (Cys) or/and methionine (Met), or/and the precursors of Glucosinolate (GSL) types along with Se application.
View Article and Find Full Text PDFSulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form.
View Article and Find Full Text PDFThe aim of this work was to study maize root phenotype under sulfur deficiency stress towards revealing potential correlations between the altered phenotypic traits and the corresponding dry mass, sulfur, and iron allocation within plants at the whole-plant level. The dynamics of root morphological and anatomical traits were monitored. These traits were then correlated with plant foliage traits along with dry mass and sulfur and iron allocation dynamics in the shoot versus root.
View Article and Find Full Text PDFPlant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to and genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight.
View Article and Find Full Text PDFSulfur is an essential macronutrient for growth of higher plants. The entry of the sulfate anion into the plant, its importation into the plastids for assimilation, its long-distance transport through the vasculature, and its storage in the vacuoles require specific sulfate transporter proteins. In this study, mycorrhizal and non-mycorrhizal maize plants were grown for 60 days in an S-deprived substrate, whilst iron was provided to the plants in the sparingly soluble form of FePO.
View Article and Find Full Text PDFPrevious experiments have shown that the application of fertilizer granules containing elemental sulfur (S) as an ingredient (FBS) in durum wheat crops produced a higher yield than that produced by conventional ones (F), provided that the soils of the experimental fields (F vs. FBS) were of comparable quality and with the Olsen P content of the field's soil above 8 mg kg. In this experiment the FBS treatment took place in soil with Olsen P at 7.
View Article and Find Full Text PDFPlants have developed sophisticated mechanisms for acquiring iron from the soil. In the graminaceous species, a chelation strategy is in charge, in order to take up ferric iron from the rhizosphere. The ferric iron chelation-strategy components may also be present in the aerial plant parts.
View Article and Find Full Text PDFThe demand to develop fertilizers with higher sulfur use efficiency has intensified over the last decade, since sulfur deficiency in crops has become more widespread. The aim of this study was to investigate whether fertilizers enriched with 2% elemental sulfur (ES) via a binding material of organic nature improve yield when compared to the corresponding conventional ones. Under the scanning electron microscope, the granules of the ES-containing fertilizer were found to be covered by a layer of crystal-like particles, the width of which was found to be up to 60 μm.
View Article and Find Full Text PDFNicotianamine is an essential molecule for Fe homeostasis in plants, its primary precursor is the S-containing compound methionine, and it is biosynthesized by the enzyme family of nicotianamine synthases (NASs). In maize, a graminaceous plant that follows Strategy II for Fe uptake, ZmNAS genes can be subgrouped into two classes, according to their roles and tissue specific expression profiles. In roots, the genes of class I provide NA for the production of deoxymugineic acid (DMA), which is secreted to the rhizosphere and chelates Fe(III).
View Article and Find Full Text PDFAerenchyma attributes plant tissues that contain enlarged spaces exceeding those commonly found as intracellular spaces. It is known that sulfur (S) deficiency leads to formation of aerenchyma in maize adventitious roots by lysis of cortical cells. Seven-day-old maize plants were grown in a hydroponics setup for 19 days under S deprivation against full nutrition.
View Article and Find Full Text PDFNitrate (N), phosphate (P) or sulphate (S) deprivation causes aerenchyma formation in maize (Zea mays L.) nodal roots. The exact mechanisms that trigger the formation of aerenchyma under these circumstances are unclear.
View Article and Find Full Text PDFBackground And Aims: Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification.
Methods: The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution.