Publications by authors named "Stumpf T"

Article Synopsis
  • Researchers synthesized isostructural early actinide complexes [An(pyrophen)] (where An = Th, U, Np, Pu) to study how a conjugated framework in the ligand backbone affects actinide bonding.
  • Solid state analysis through single-crystal X-ray diffraction revealed that the ligands bind in an almost orthogonal arrangement to the actinide center, with larger actinides allowing additional solvent coordination.
  • NMR studies indicated symmetrical complexes in solution and suggested ionic binding predominantly, while also hinting at significant covalency in U, Np, and Pu compounds, allowing comparisons with related N-donor ligands.
View Article and Find Full Text PDF

Isostructural trivalent lanthanide and actinide amidinates bearing the -bis(isopropyl)benzamidinate (PrBA) ligand [Ln/An(PrBA)] (Ln = La, Nd, Sm, Eu, Yb, Lu; An = U, Np) have been synthesized and characterized in both solid and solution states. All compounds were examined in the solid state utilizing single crystal X-ray diffraction (SC-XRD), revealing a notable deviation in the actinide series with shortened bond lengths compared to the trend in the lanthanide series, suggesting a nonionic contribution to the actinide-ligand bonding. Quantum-chemical bonding analysis further elucidated the nature of these interactions, highlighting increased covalency within the actinide series, as evidenced by higher delocalization indices and greater 5 orbital occupation, except for Th(III) and Pa(III), which demonstrated substantial 6 orbital occupancies.

View Article and Find Full Text PDF

Diatoms and bacteria play a vital role in investigating the ecological effects of heavy metals in the environment. Despite separate studies on metal interactions with diatoms and bacteria, there is a significant gap in research regarding heavy metal interactions within a diatom-bacterium system, which closely mirrors natural conditions. In this study, we aim to address this gap by examining the interaction of uranium(VI) (U(VI)) with Achnanthidium saprophilum freshwater diatoms and their natural bacterial community, primarily consisting of four successfully isolated bacterial strains (Acidovorax facilis, Agrobacterium fabrum, Brevundimonas mediterranea, and Pseudomonas peli) from the diatom culture.

View Article and Find Full Text PDF

High-level radioactive waste needs to be safely stored for a long time in a deep geological repository by using a multi-barrier system. In this system, suitable barrier materials are selected that ideally show long-term stability to prevent early radionuclide release into the biosphere. In this study, different container matals (copper and cast iron) and pore water compositions (Opalinus Clay pore water and saline cap rock solution) were combined with Bavarian bentonite in static batch experiments to investigate microbial-influenced corrosion.

View Article and Find Full Text PDF

Heavy metals pose a potential health risk to humans when they enter the organism. Renal excretion is one of the elimination pathways and, therefore, investigations with kidney cells are of particular interest. In the present study, the effects of Ba(II), Eu(III), and U(VI) on rat and human renal cells were investigated in vitro.

View Article and Find Full Text PDF

Characterizing uranium (U) mine water is necessary to understand and design an effective bioremediation strategy. In this study, water samples from two former U-mines in East Germany were analysed. The U and sulphate (SO) concentrations of Schlema-Alberoda mine water (U: 1 mg/L; SO: 335 mg/L) were 2 and 3 order of magnitude higher than those of the Pöhla sample (U: 0.

View Article and Find Full Text PDF

Objectives: The consecutive case series accesses the results and experiences of ridge augmentation using an umbrella screw tenting technique.

Method And Materials: In total, 279 patients were treated between 26 May 2015 and 16 June 2021, including horizontal and vertical ridge defects. Sex, age, smoking behavior, jaw, graft material, soft tissue thickness, extent of horizontal/vertical augmentation, resorption rate, and occurrence of early/late exposure were evaluated.

View Article and Find Full Text PDF

The interactions of the long-lived actinide neptunium with the corrosion product zirconia (ZrO) have to be considered in the safety assessment of a repository for radioactive waste. The sorption of Np(V) on ZrO was investigated in the absence of carbonate at the macroscopic and molecular scale. At the macroscopic level, the Np(V) uptake was independent of ionic strength and the isoelectric point of the pristine zirconia was increased, both suggesting the presence of inner-sphere Np(V) surface complexes.

View Article and Find Full Text PDF

Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste.

View Article and Find Full Text PDF

To pursue the design of stable chelating systems for radiometals, a concise and straightforward method toolbox was developed combining NMR, isothermal titration calorimetry (ITC), and europium time-resolved laser-induced fluorescence spectroscopy (Eu-TRLFS). For this purpose, the macropa chelator was chosen, and Lu, La, Pb, Ra, and Ba were chosen as radiopharmaceutically relevant metal ions. They differ in charge (2+ and 3+) and coordination properties (main group vs lanthanides).

View Article and Find Full Text PDF

The extensive use of lanthanides in science, industry and high-technology products is accompanied by an anthropogenic input of rare earth elements into the environment. Knowledge of a metal's environmental fate is essential for reasonable risk assessment and remediation approaches. In the present study, Eu(III) was representatively used as a luminescent probe to study the chemical environment and to elucidate the molecular interactions of lanthanides with a suspension cell culture of BY-2.

View Article and Find Full Text PDF

The complex formation of Eu(III) and Cm(III) was studied via tetradentate, hexadentate, and octadentate coordinating ligands of the aminopolycarboxylate family, viz., nitrilotriacetate (NTA), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethyl ether)-,,','-tetraacetate (EGTA), respectively. Based on the complexones' p values obtained from H nuclear magnetic resonance (NMR) spectroscopic pH titration, complex formation constants were determined by means of the parallel-factor-analysis-assisted evaluation of Eu(III) and Cm(III) time-resolved laser-induced fluorescence spectroscopy (TRLFS).

View Article and Find Full Text PDF

For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h.

View Article and Find Full Text PDF

Microbial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D.

View Article and Find Full Text PDF

Europium, as an easy-to-study analog of the trivalent actinides, is of particular importance for studying the behavior of lanthanides and actinides in the environment. Since different soil organisms can influence the migration behavior of these elements, a detailed knowledge of these interaction mechanisms is important. The aim of this study was to investigate the interaction of mycelia of selected wood-inhabiting (S.

View Article and Find Full Text PDF

Daucus carota suspension cells showed a high affinity towards Eu(III) and U(VI) based on a single-step bioassociation process with an equilibrium after 48-72 h. Cells responded with an increased metabolic activity towards heavy metal stress. Luminescence spectroscopy pointed to multiple species for both f-block elements in the culture media, providing initial hints of their interaction with cells and released metabolites.

View Article and Find Full Text PDF

To assess a reliable safety case for future deep underground repositories for highly active nuclear waste the retention of radionuclides by the surrounding host rock must be understood comprehensively. Retention is influenced by several parameters such as mineral heterogeneity and surface roughness, as well as pore water chemistry (e.g.

View Article and Find Full Text PDF

Technetium (Tc) is an environmentally relevant radioactive contaminant whose migration is limited when Tc(VII) is reduced to Tc(IV). However, its reaction mechanisms are not well understood yet. We have combined electrochemistry, spectroscopy, and microscopy (cyclic voltammetry, rotating disk electrode, X-ray photoelectron spectroscopy, and Raman and scanning electron microscopy) to study Tc(VII) reduction in non-complexing media: 0.

View Article and Find Full Text PDF

Objective: To evaluate re-osseointegration after electrolytic cleaning and regenerative therapy of dental implants with peri-implantitis in humans.

Material And Methods: Four dental implants that developed peri-implantitis underwent electrolytic cleaning followed by regenerative therapy with guided bone regeneration. All four implants developed recurrent peri-implantitis and were therefore explanted 6 to 13 months later.

View Article and Find Full Text PDF

Reaction of the N-heterocylic carbene ligand PrIm (L ) and lithium bis(trimethylsilyl)amide (TMSA) as a base with UCl resulted in U(IV) and U(V) complexes. Uranium's +V oxidation state in (HL ) [U(V)(TMSI)Cl ] (TMSI=trimethylsilylimido) (2) was confirmed by HERFD-XANES measurements. Solid state characterization by SC-XRD and geometry optimisation of [U(IV)(L ) (TMSA)Cl ] (1) indicated a silylamido ligand mediated inverse trans influence (ITI).

View Article and Find Full Text PDF

The safe disposal of high-level radioactive waste in a deep geological repository is a huge social and technical challenge. So far, one of the less considered factors needed for a long-term risk assessment, is the impact of microorganisms occurring in the different host rocks. Even under the harsh conditions of salt formations different bacterial and archaeal species were found, e.

View Article and Find Full Text PDF

A new series of lanthanide (1-5) and uranyl (6) complexes with a tetra-substituted bifunctional calixarene ligand H L is described. The coordination environment for the Ln and UO ions is provided by phosphoryl and salicylamide functional groups appended to the lower rim of the p-tert-butylcalix[4]arene scaffold. Ligand interactions with lanthanide cations (light: La , Pr ; intermediate: Eu and Gd ; and heavy: Yb ), as well as the uranyl cation (UO ) is examined in the solution and solid state, respectively with spectrophotometric titration and single crystal X-ray diffractometry.

View Article and Find Full Text PDF

Invited for the cover of this issue is the group of Moritz Schmidt at the Helmholtz-Zentrum Dresden-Rossendorf. The image depicts the relative strength of bonds from an actinide to a pyrrole-based ligand in comparison with the salen ligand. Read the full text of the article at 10.

View Article and Find Full Text PDF

Reactive transport modeling (RTM) is an essential tool for the prediction of contaminants' behavior in the bio- and geosphere. However, RTM of sorption reactions is constrained by the reactive surface site assessment. The reactive site density variability of the crystal surface nanotopography provides an "energetic landscape", responsible for heterogeneous sorption efficiency, not covered in current RTM approaches.

View Article and Find Full Text PDF

We report a series of isostructural tetravalent actinide (Th, U-Pu) complexes with the N-donor ligand N,N'-ethylene-bis((pyrrole-2-yl)methanimine) (H L, H pyren). Structural data from SC-XRD analysis reveal [An(pyren) ] complexes with different An-N versus An-N bond lengths. Quantum chemical calculations elucidated the bonding situation, including differences in the covalent character of the coordinative bonds.

View Article and Find Full Text PDF