Publications by authors named "Studneva I"

Type 1 diabetes mellitus (T1DM) is the most severe form of diabetes, which is characterized by absolute insulin deficiency induced by the destruction of pancreatic beta cells. The aim of this study was to evaluate the effect of a structural analogue of apelin-12 ((NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, metilin) on hyperglycemia, mitochondrial (MCh) respiration in permeabilized cardiac left ventricular (LV) fibers, the myocardial energy state, and cardiomyocyte membranes damage in a model of streptozotocin (STZ) diabetes in rats. Metilin was prepared by solid-phase synthesis using the Fmoc strategy and purified using HPLC.

View Article and Find Full Text PDF

Creation of bioactive molecules for treatment of cardiovascular diseases based on natural peptides is the focus of intensive experimental research. In the recent years, it has been established that C-terminal fragments of apelin, an endogenous ligand of the APJ receptor, reduce metabolic and functional disorders in experimental heart damage. The review presents literature data and generalized results of our own experiments on the effect of apelin-13, [Pyr]apelin-13, apelin-12, and their chemically modified analogues on the heart under normal and pathophysiological conditions in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate how activating the GalR2 receptor with specific peptides (G1 and G2) protects rat hearts from damage caused by ischemia/reperfusion (I/R) injury.
  • A 40-minute blockage followed by 60 minutes of blood flow restoration was used to simulate heart damage, with heart protection measured by looking at infarct size and levels of CK-MB enzyme.
  • Results showed that the peptides significantly reduced heart damage, but a selective inhibitor (M871) countered their protective effects, confirming GalR2's key role in cardiac protection during I/R injury and suggesting potential for new heart disease treatments.
View Article and Find Full Text PDF

Antioxidant and anti-ischemic properties of the pharmacological agonist of galanin receptor GalR2 WTLNSAGYLLGPβAH (Gal) and its C-terminal fragment, dipeptide carnosine (βAH), were studied in the model of regional ischemia and reperfusion of the rat heart in vivo in the dose range of 0.5-5.0 mg/kg and Cu²⁺-induced free radical oxidation of low density lipoproteins (LDL) of human plasma in vitro for peptide concentrations of 0.

View Article and Find Full Text PDF

Neuropeptide galanin and its N-terminal fragments reduce the generation of reactive oxygen species and normalize metabolic and antioxidant states of myocardium in experimental cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to elucidate the effect of WTLNSAGYLLGPβAH-OH (peptide G), a pharmacological agonist of the galanin receptor GalR2, on the cardiac injury induced by administration of streptozotocin (STZ) in rats. Peptide G was prepared by solid phase peptide synthesis using the Fmoc strategy and purified by preparative HPLC; its structure was confirmed by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry.

View Article and Find Full Text PDF

Aim      To study left ventricular (LV) hemodynamics in presence of decreased blood inflow to the heart as well as changes in myocardial content of energy metabolites in diabetic rats.Material and methods  Diabetic cardiomyopathy is characterized by impaired heart contractility and by transition of cardiomyocyte energy metabolism fatty acids exclusively as a source of energy. This reduces the efficiency of energy utilization and increases the heart vulnerability to hypoxia.

View Article and Find Full Text PDF

The design of new drugs for treatment of cardiovascular diseases based on endogenous peptide hormones is of undoubted interest and stimulates intensive experimental research. One of the approaches for development in this area is synthesis of the short bioactive peptides that mimic effects of the larger peptide molecules and have improved physicochemical characteristics. In recent years, it has been found that the N-terminal fragments of the neuropeptide galanin reduce metabolic and functional disorders in the experimental heart damage.

View Article and Find Full Text PDF

Antioxidant properties of rat galanin GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2 (Gal), N-terminal fragment of galanin (2-15 aa) WTLNSAGYLLGPHA (G1), and its modified analogue WTLNSAGYLLGPβAH (G2) were studied in vivo in the rat model of regional myocardial ischemia and reperfusion and in vitro in the process of Cu2+-induced free radical oxidation of human blood plasma low-density lipoproteins. Intravenous administration of G1, G2, and Gal to rats after ischemia induction reduced the infarction size and activities of the necrosis markers, creatine kinase-MB and lactate dehydrogenase, in blood plasma at the end of reperfusion. G1, G2, and Gal reduced formation of the spin adducts of hydroxyl radicals in the interstitium of the area at risk during reperfusion, moreover, G2 and Gal also reduced formation of the secondary products of lipid peroxidation in the reperfused myocardium.

View Article and Find Full Text PDF

Cardiac surgery, including cardioplegic arrest and extracorporeal circulation, causes endothelial dysfunction, which can lead to no-reflow phenomenon and reduction of myocardial pump function. Nitric oxide (NO) deficiency is involved in this pathologic process, thereby providing a fundamental basis for the use of NO replacement therapy. Presently used drugs and additives to cardioplegic and heart preservation solutions are not able to reliably protect endothelial cells and cardiomyocytes from ischemia-reperfusion injury.

View Article and Find Full Text PDF

The use of the anticancer drug doxorubicin (Dox) is limited by its cardiotoxic effect. The aim of this work was to study the effect of a new synthetic agonist of the galanin receptor GalR1-3 [βAla14, His15]-galanine (2-15) (G) on the metabolism, antioxidant enzyme activity, and cardiac function in rats with cardiomyopathy (CM) caused by chronic administration of Dox. Coadministration of peptide G and Dox significantly increased the fractional shortening (FS) and ejection fraction (EF) by an average of 30 ± 4% compared with the indices in the Dox group.

View Article and Find Full Text PDF

Chemically modified peptide apelin-12 ([MeArg, NLe]-apelin12, peptide M) is able to reduce reactive oxygen species (ROS) formation, cell death, and metabolic and ionic homeostasis disorders in experimental myocardial ischemia-reperfusion injury. These beneficial effects indicate the therapeutic potential of this compound in cardiovascular diseases. The goals of this work were to optimize the synthesis of peptide M, and to study its proteolytic stability and effect on the heart function of rabbits with doxorubicin (Dox) cardiomyopathy.

View Article and Find Full Text PDF

Relevance:  Diastolic dysfunction occurring at hypertension, obesity, diabetes, or treatment with doxorubicin tends to prevail in all patterns of chronic heart failure. Lack of effective therapy forces to look more into the metabolic processes in cardiomyocytes.

Objective:  Assess energy metabolism in cardiomyocytes and changes in titin, a giant myofibril protein that responsible for their elasticity.

View Article and Find Full Text PDF

The mechanisms of protective action of the neuropeptide galanin and its N-terminal fragments against myocardial ischaemia/reperfusion (I/R) injury remain obscure. The aim of this work was to study effects of a novel peptide agonist of galanin receptors [βAla14, His15]-galanin (2-15) (G1) and the full-length galanin (G2) on energy and antioxidant status of the heart with acute infarction. The peptides were synthesized by the automatic solid phase method using Fmoc technology.

View Article and Find Full Text PDF

The goal of this study was to examine effects of a novel galanin receptor agonist GalR1-3 [bAla14, His15]-galanine 2-15 (G), obtained by automatic solid-phase synthesis, on the metabolic state of the area at risk and the size of acute myocardial infarction (MI) in rats in vivo and evaluate its toxicity in BALB /c mice. In anesthetized rats, regional ischemia was simulated by coronary artery occlusion and then coronary blood flow was restored. The peptide G was administered intravenously (i.

View Article and Find Full Text PDF

The use of the anticancer drug doxorubicin (Dox) is limited due to its cardiotoxic effect. Using the method of automatic solid-phase peptide synthesis, we obtained a synthetic agonist of galanin receptors GalR1-3 [RAla14, His15]-galanine (2-15) (G), exhibiting cardioprotective properties. It was purified by high performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

The aim of the study was comparison of contractile function of isolated hearts of rats with doxorubicin-induced myocardial injury which were tentatively divided according to the level of ejection fraction determined by echocardiography in vivo. After 4 weeks of doxorubicin administration (2 mg/kg subcutaneously once a week) about half of animals had normal (86±1%) and the other half reduced (61±4%) ejection fraction. The first group was defined as diastolic heart failure (DHF) and the other as systolic (SHF).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how dinitrosyl iron complexes with reduced glutathione (DNIC-GS) can protect the heart during myocardial ischemia/reperfusion (I/R) injury, which occurs during open-heart surgeries due to disturbed nitric oxide levels.
  • Experiments using isolated rat hearts showed that adding DNIC-GS to cardioplegic or reperfusion solutions significantly enhanced coronary flow and cardiac function, while also reducing harmful substances like lactate dehydrogenase (LDH) and reactive oxygen species (ROS).
  • The beneficial effects of DNIC-GS are linked to its ability to stabilize nitric oxide and transfer Fe(NO) to myocardial proteins, suggesting it may serve as an effective
View Article and Find Full Text PDF

N-terminal fragments of galanin (2-11) and (2-15) are critical for binding to GalR1-3 receptors, members of the G-protein-coupled receptor superfamily, and are involved in myocardial protection against ischemia/reperfusion (I/R) injury. This study was designed to synthesize novel GalR1-3 agonists with improved properties and evaluate their efficiency as cardioprotective agents. Peptide agonists were synthesized by the automatic solid phase method using Fmoc technology and purified by preparative HPLC.

View Article and Find Full Text PDF

The clinical use of antineoplastic agent doxorubicin (DOX) is limited due to its cardiotoxic action. [βAla14, His15]-galanine (2-15) (G) is a novel synthetic agonist of galanin receptors GalR1-3 having cardioprotective properties in animal models in vivo. The aim of the present study was to explore effects of G on DOX-induced cardiotoxicity.

View Article and Find Full Text PDF

Aim: To study effects of intravenous infusion of a cardioprotective drug metilin, developed at the "National Medical Research Center of Cardiology" on indices of cardiac function in rabbits in vivo after prolonged administration of doxorubicin.

Materials And Methods: Animals of the experimental group were intravenously injected with doxorubicin (2 mg / kg once a week) for 8 weeks, animals of the control group received the same volume of saline. Myocardial damage was characterized by an increase in concentration of malondialdehyde (MDA), troponin (TnI) and MB-fraction of creatine kinase (CK-MB) in venous blood and by disturbances in the left ventricle (LV) structure at morphological examination.

View Article and Find Full Text PDF

The aim of the study was comparison of contractile function of isolated hearts of rats with doxorubicin-induced myocardial injury which were tentatively divided according to the level of ejection fraction determined by echocardiography in vivo. After 4 weeks of doxorubicin administration (2 mg/kg subcutaneously once a week) about half of animals had normal (86±1 %) and the other half reduced (61±4 %) ejection fraction. The first group was defined as diastolic heart failure (DHF) and the other as systolic (SHF).

View Article and Find Full Text PDF

Agonists and antagonists for galanin receptor subtypes GalR1-3 can be used as putative therapeutics targets for the treatment of various human diseases. However, effects of galanin and its N-terminal fragments on myocardial ischemia/reperfusion injury remain unclear. This study was designed to assess the ability of the full-length galanin (GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2, G1), the natural fragments WTLNSAGYLL-NH2 (G2) and WTLNSAGYLLGPHA (G3), and their modified analogs WTLNAAGYLL (G4) and WTLNSAGYLLGPβAH (G5) to limit acute myocardial infarction in rats in vivo.

View Article and Find Full Text PDF

The maintenance of nitric oxide (NO) bioavailability has been recognized as an important component of myocardial protection during cardiac surgery. This study was designed to evaluate the efficacy of using two NO-donating compounds in cardioplegia and reperfusion: (i) a modified peptide apelin-12 (MA12) that activates endothelial NO synthase (eNOS) and (ii) dinitrosyl iron complexes with reduced glutathione (DNIC-GS), a natural NO vehicle. Isolated perfused working rat hearts were subjected to normothermic global ischemia and reperfusion.

View Article and Find Full Text PDF

Background And Purpose: Galanin is an endogenous peptide involved in diverse physiological functions in the central nervous system including central cardiovascular regulation. The present study was designed to evaluate the potential effects of the short N-terminal galanin fragment 2-15 (G) on cardiac ischemia/reperfusion (I/R) injury.

Experimental Approach: Peptide G was synthesized by the automatic solid phase method and identified by 1H-NMR spectroscopy and mass spectrometry.

View Article and Find Full Text PDF

Background And Purpose: Galanin is a multifunctional neuropeptide with pleiotropic roles. The present study was designed to evaluate the potential effects of galanin (2-11) (G1) on functional and metabolic abnormalities in response to myocardial ischemia-reperfusion (I/R) injury.

Experimental Approach: Peptide G1 was synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase method.

View Article and Find Full Text PDF