Spatially analyzing non-uniform distributions of electric phenomena such as electric field and permittivity in ferroelectric devices is very challenging. In this study, we apply an optical beam deflection method to map the non-uniform electric phenomena in relaxor ferroelectric potassium tantalate niobate (KTN) crystals. To adequately correlate the physical parameters and their spatial distributions in KTN crystals, a general model that describes the giant electro-optic response and associated beam deflection is derived.
View Article and Find Full Text PDFWe report the latest progress in fabrication and laser performance of the fully crystalline double-clad 'Yb:YAG-core/undoped-YAG-clad' fibers grown by the hybrid crystal growth method. The single-crystalline ytterbium (Yb) doped yttrium aluminum garnet (YAG) fiber cores were grown by the laser heated pedestal growth (LHPG) method, and the single-crystalline undoped YAG claddings were grown by the liquid phase epitaxy (LPE) technique, in which the single-crystalline Yb:YAG cores were used as the growth seeds. The key parameters of the hybrid-grown 'crystalline core/crystalline clad' (C4) fibers, including material composition, crystal structure, and fiber propagation loss, were characterized.
View Article and Find Full Text PDFA tri-color composite volume holographic polymer dispersed liquid crystal (H-PDLC) grating and its application to 3-dimensional (3D) color autostereoscopic display are reported in this paper. The composite volume H-PDLC grating consists of three different period volume H-PDLC sub-gratings. The longer period diffracts red light, the medium period diffracts the green light, and the shorter period diffracts the blue light.
View Article and Find Full Text PDFA new type of LED, single chip super broadband InGaN/GaN LED is presented in this paper. The LED is composed of an InGaN/GaN quantum well layer deposited on the nanostructured sapphire substrate, inscribed by femtosecond laser ablation. The super broadband emission is enabled due to the large variation of indium composition in a small local area so that different wavelengths can be emitted over a small area and the summation of these different emission wavelengths forms super broadband emission, which covers the entire visible spectral range.
View Article and Find Full Text PDFIn this paper, a new type of optical waveguide based on potassium tantalate niobate (KTN) electro-optic crystal is presented. The guiding property of the optical waveguide can be quickly (on the order of nanosecond) tuned and controlled by the applied external electric field, which can be useful for many applications such as broadband ultrafast optical modulators, variable optical attenuators, and dynamic gain equalizers.
View Article and Find Full Text PDFAn electrically waveform controllable optical chopper based on holographic polymer dispersed liquid crystal grating (H-PDLC) is presented in this paper. The theoretical analyses and experimental results show that the proposed optical chopper has following merits: (1) controllable waveform, (2) no mechanical motion induced vibrational noise, and (3) multiple-channel integration capability. The application of this unique electrically controllable optical chopper to frequency division multiplexed fluorescent microscopy is also addressed in this paper, which has the potential to increase the channel capacity, the stability and the reliability.
View Article and Find Full Text PDFIn this paper, we demonstrate that the the bandwidth of the supercontinuum spectrum generated in a large mode area sapphire fiber can be enhanced by employing triple pumping sources. Three pumping sources with wavelengths of 784 nm, 1290 nm, and 2000 nm are launched into a single crystal sapphire fiber that is 5 cm in length and has a core diameter of 115 microm. The nonlinear interactions due to self-phase modulation and four-wave mixing form a broadband supercontinuum that covers the UV, visible, near-IR and lower mid-IR regions.
View Article and Find Full Text PDFIn this paper, an investigation on broadband IR supercontinuum generation in single crystal sapphire fibers is presented. It is experimentally demonstrated that broadband IR supercontinuum spectrum (up to 3.2microm) can be achieved by launching ultra-short femtosecond laser pulses into single crystal sapphire fiber with a dimension 115microm in diameter and 5cm in length, which covers both the near IR spectral region and the lower end of the mid-IR spectral range.
View Article and Find Full Text PDFIn this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots.
View Article and Find Full Text PDF