Green fluorescent protein and its variants are frequently used as Förster (fluorescence) resonance energy transfer (FRET) pairs to determine the proximity of protein domains. We prepared fusion proteins comprising yellow fluorescent protein-Dictyostelium myosin II motor domain-cyan fluorescent protein (YFP-myosin-CFP) and compared their FRET properties with an existing construct (GFP-myosin-BFP), containing a green fluorescent protein acceptor and blue fluorescent protein donor [Suzuki, Y., Yasunaga, T.
View Article and Find Full Text PDFYellow fluorescent protein (YFP 10C) is widely used as a probe in biology, but its complex photochemistry gives rise to unusual behavior that requires fuller definition. Here we characterize the kinetics of protonation and reversible bleaching over time scales of picoseconds to hours. Stopped-flow and pressure-jump techniques showed that protonation of the fluorescent YFP(-) anion state is two-step with a slow transition that accounts for blinking of 527 nm emission at the single molecule level on the seconds time scale.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2004
Transient kinetic measurements of the actomyosin ATPase provided the basis of the Lymn-Taylor model for the cross-bridge cycle, which underpins current models of contraction. Following the determination of the structure of the myosin motor domain, it has been possible to introduce probes at defined sites and resolve the steps in more detail. Probes have been introduced in the Dicytostelium myosin II motor domain via three routes: (i) single tryptophan residues at strategic locations throughout the motor domain; (ii) green fluorescent protein fusions at the N and C termini; and (iii) labelled cysteine residues engineered across the actin-binding cleft.
View Article and Find Full Text PDFDictyostelium discoideum is a useful host for the production of constructs for the analysis of structure-function relationships of myosin. Here we describe the use of myosin II constructs containing a single tryptophan residue, at different locations, for probing events at the nucleotide binding site, the relay loop and the communication path between them. GFP fusions have also been expressed at the N- and C-termini of the myosin motor to provide sensitive probes of the actomyosin dissociation reaction in microscope-based kinetic assays.
View Article and Find Full Text PDF