Trisomy 21, resulting in Down Syndrome (DS), is the most common autosomal trisomy among live-born infants and is caused mainly by nondisjunction of chromosome 21 within oocytes. Risk factors for nondisjunction depend on the parental origin and type of meiotic error. For errors in the oocyte, increased maternal age and altered patterns of recombination are highly associated with nondisjunction.
View Article and Find Full Text PDFIn oocytes with nondisjoined chromosomes 21 due to a meiosis I (MI) error, recombination is significantly reduced along chromosome 21; several lines of evidence indicate that this contributes to the nondisjunction event. A pilot study found evidence that these oocytes also have reduced recombination genome-wide when compared with controls. This suggests that factors that act globally may be contributing to the reduced recombination on chromosome 21, and hence, the nondisjunction event.
View Article and Find Full Text PDFCurrent technology allows clinical laboratories to rapidly translate research discoveries from small patient cohorts into clinical genetic tests; therefore, a potentially large proportion of sequence variants identified in individuals with clinical features of a genetic disorder remain unpublished. Without a mechanism for clinical laboratories to share data, interpretation of sequence variants may be inconsistent. We describe here the two components of Emory Genetics Laboratory's (EGL) in-house developed data management system.
View Article and Find Full Text PDFBoth a lack of maternal folic acid supplementation and the presence of genetic variants that reduce enzyme activity in folate pathway genes have been linked to meiotic nondisjunction of chromosome 21; however, the findings in this area of research have been inconsistent. To better understand these inconsistencies, we asked whether maternal use of a folic acid-containing supplement before conception reduces risk for chromosome 21 nondisjunction. Using questionnaire data from the National Down Syndrome Project, a population-based case-control study, we compared the use of folic acid-containing supplements among mothers of infants with full trisomy 21 due to maternal nondisjunction (n = 702) and mothers of infants born with no major birth defects (n = 983).
View Article and Find Full Text PDFWe have previously examined characteristics of maternal chromosomes 21 that exhibited a single recombination on 21q and proposed that certain recombination configurations are risk factors for either meiosis I (MI) or meiosis II (MII) nondisjunction. The primary goal of this analysis was to examine characteristics of maternal chromosomes 21 that exhibited multiple recombinant events on 21q to determine whether additional risk factors or mechanisms are suggested. In order to identify the origin (maternal or paternal) and stage (MI or MII) of the meiotic errors, as well as placement of recombination, we genotyped over 1,500 SNPs on 21q.
View Article and Find Full Text PDFWe recently reported elevated symptoms associated with attention-deficit hyperactivity disorder (ADHD) among adult female carriers of the FMR1 premutation. To gain insight into the contribution of this mutation in the context of polygenes, we examined the proportion of variation in these symptoms due to residual genetic factors after adjustment for the effect of the premutation. To accomplish this, we performed a familial aggregation analysis of ADHD symptoms among 231 females from 82 pedigrees using scores from the Connors Adult ADHD Rating Scales.
View Article and Find Full Text PDFBirth Defects Res A Clin Mol Teratol
October 2011
Background: Maternal folic acid supplementation has been associated with a reduced risk for neural tube defects and may be associated with a reduced risk for congenital heart defects and other birth defects. Individuals with Down syndrome are at high risk for congenital heart defects and have been shown to have abnormal folate metabolism.
Methods: As part of the population-based case-control National Down Syndrome Project, 1011 mothers of infants with Down syndrome reported their use of supplements containing folic acid.
Cardiac abnormalities are one of the most common congenital defects observed in individuals with Down syndrome. Considerable research has implicated both folate deficiency and genetic variation in folate pathway genes with birth defects, including both congenital heart defects (CHD) and Down syndrome (DS). Here, we test variation in folate pathway genes for a role in the major DS-associated CHD atrioventricular septal defect (AVSD).
View Article and Find Full Text PDFThe fragile X mental retardation gene (FMR1) contains a CGG repeat sequence in its 5' untranslated region that can become unstable and expand in length from generation to generation. Alleles with expanded repeats in the range of approximately 55-199, termed premutation alleles, are associated with an increased risk for fragile-X-associated primary ovarian insufficiency (FXPOI). However, not all women who carry the premutation develop FXPOI.
View Article and Find Full Text PDFPurpose: The population-based National Down Syndrome Project combined epidemiological and molecular methods to study congenital heart defects in Down syndrome.
Methods: Between 2000 and 2004, six sites collected DNA, clinical, and epidemiological information on parents and infants. We used logistic regression to examine factors associated with the most common Down syndrome-associated heart defects.
Objective: The National Down Syndrome Project (NDSP), based at Emory University in Atlanta, Georgia, represents a multi-site, population-based, case-control study with two major aims: (1) to identify molecular and epidemiological factors contributing to chromosome nondisjunction and the consequent packaging of an extra chromosome into an egg or sperm, and (2) to identify risk factors for Down syndrome-associated birth defects.
Methods: The six national sites represent approximately 11% of U.S.