Publications by authors named "Stuart W Krasner"

Background: Trihalomethanes (THM), a major class of disinfection by-products, are widespread and are associated with adverse health effects. We conducted a global evaluation of current THM regulations and concentrations in drinking water.

Methods: We included 120 countries (∼7000 million inhabitants in 2016), representing 94% of the world population.

View Article and Find Full Text PDF

A survey was conducted at eight U.S. drinking water plants, that spanned a wide range of water qualities and treatment/disinfection practices.

View Article and Find Full Text PDF

Nitrification and biofilm growth within distribution systems remain major issues for drinking water treatment plants utilizing chloramine disinfection. Many chloraminated plants periodically switch to chlorine disinfection for several weeks to mitigate these issues, known as "chlorine burns". The evaluation of disinfection byproduct (DBP) formation during chlorine burns beyond regulated DBPs is scarce.

View Article and Find Full Text PDF

This study reveals key disinfection byproduct (DBP) toxicity drivers in drinking water across the United States. DBPs, which are ubiquitous in drinking water, form by the reaction of disinfectants, organic matter, bromide, and iodide and are generally present at 100-1000× higher concentrations than other contaminants. DBPs are linked to bladder cancer, miscarriage, and birth defects in human epidemiologic studies, but it is not known as to which DBPs are responsible.

View Article and Find Full Text PDF

Two chlorophenylacetonitriles (CPANs) (2-chloro- and 3,4-dichlorophenylacetonitrile), representatives of an emerging class of aromatic nitrogenous disinfection byproducts, were recently identified in chlor(am)inated drinking water with liquid/liquid extraction and gas chromatography/mass spectrometry (GC/MS). Due to their high cytotoxicity, they are potentially significant drinking water contaminants. The detection limit for these two CPANs with the previous method was 100 ng L.

View Article and Find Full Text PDF

Haloacetamides (HAMs), an emerging class of disinfection by-products, have received increasing attention due to their elevated cyto- and genotoxicity. However, only limited information is available regarding the iodinated analogues. This study investigated the formation and speciation of iodinated haloacetamides (I-HAMs) and their chlorinated/brominated analogues during the chloramination of bromide and/or iodide-containing waters and a model compound solution over various time periods.

View Article and Find Full Text PDF

Haloacetamides (HAMs), a group of nitrogenous disinfection byproducts (N-DBPs), can decompose to form corresponding intermediate products and other DBPs. The stability of ten different HAMs, including two chlorinated, five brominated, and three iodinated species was investigated with and without the presence of chlorine, chloramines, and reactive solutes such as quenching agents. The HAM basic hydrolysis and chlorination kinetics were well described by a second-order kinetics model, including first-order in HAM and hydroxide and first-order in HAM and hypochlorite, respectively, whereas the HAM neutral hydrolysis kinetic was first-order in HAM.

View Article and Find Full Text PDF

In the 1980s, a case-control epidemiologic study was conducted in Iowa (USA) to analyze the association between exposure to disinfection by-products (DBPs) and bladder cancer risk. Trihalomethanes (THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture. Average THM exposure was calculated, based on rough estimates of past levels in Iowa.

View Article and Find Full Text PDF

The formation of carcinogenic N-nitrosodimethylamine (NDMA) during chloramination at drinking water treatment plants has raised concerns as more plants have switched from chlorine to chloramine disinfection. In this study, a source of NDMA precursors that has yet to be investigated was examined. Veterinary antibiotics are used in large quantities at animal agricultural operations.

View Article and Find Full Text PDF

N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM).

View Article and Find Full Text PDF

Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated.

View Article and Find Full Text PDF

The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept.

View Article and Find Full Text PDF

Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present.

View Article and Find Full Text PDF

Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment.

View Article and Find Full Text PDF

Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies.

View Article and Find Full Text PDF

Utilities using chloramines need strategies to mitigate nitrosamine formation to meet potential future nitrosamine regulations. The ability to reduce NDMA formation under typical post-chloramination conditions of pretreatment with ultraviolet light from a low pressure mercury lamp (LPUV), free chlorine (HOCl), ozone (O3), and UV light from a medium pressure mercury lamp (MPUV) were compared at exposures relevant to drinking water treatment. The order of efficacy after application to waters impacted by upstream wastewater discharges was O3 > HOCl ≈ MPUV > LPUV.

View Article and Find Full Text PDF

Halobenzoquinones (HBQs) widely occur in drinking water treatment plant (DWTP) effluents; however, HBQ precursors and their removal by treatments remain unclear. Thus, we have investigated HBQ precursors in plant influents and their removal by each treatment before chlorination in nine DWTPs. The levels of HBQ precursors were determined using formation potential (FP) tests for 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,6-dibromo-1,4-benzoquinone (DBBQ).

View Article and Find Full Text PDF

N-Nitrosamines, probable human carcinogens, are a group of disinfection byproducts under consideration for drinking water regulation. Currently, no method can determine trace levels of alkyl and tobacco-specific nitrosamines (TSNAs) of varying physical and chemical properties in water by a single analysis. To tackle this difficulty, we developed a single solid-phase extraction (SPE) method with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of 14 nitrosamines of health concern with widely differing properties.

View Article and Find Full Text PDF

Haloacetamides (HAcAms), an emerging class of nitrogen-based disinfection byproducts (N-DBPs) of health concern in drinking water, have been found in drinking waters at μg/L levels. However, there is a limited understanding about the formation, speciation, and control of halogenated HAcAms. Higher ultraviolet (UV) doses and UV advanced oxidation (UV/H2O2) processes (AOPs) are under consideration for the treatment of trace organic pollutants.

View Article and Find Full Text PDF

Certain nitrosamines in water are disinfection byproducts that are probable human carcinogens. Nitrosamines have diverse and complex precursors that include effluent organic matter, some anthropogenic chemicals, and natural (likely non-humic) substances. An easy and selective tool was first developed to characterize nitrosamine precursors in treated wastewaters, including different process effluents.

View Article and Find Full Text PDF

Tobacco-specific nitrosamines (TSNAs) exist in environmental waters; however, it is unknown whether TSNAs can be produced during water disinfection. Here we report on the investigation and evidence of TSNAs as a new class of disinfection byproducts (DBPs). Using five common TSNAs, including (methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) as the targets, we first developed a solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method capable of rapidly determining these TSNAs at levels as low as 0.

View Article and Find Full Text PDF

Haloacetamides (HAcAms) are an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern. However, there are very limited data on the formation and speciation of the nine bromine- and chlorine-containing haloacetamides (HAcAm9). In the study, their formation and speciation during chlor(am)ination were investigated for a group of waters with a range of specific ultraviolet absorbance at 254 nm (SUVA₂₅₄), dissolved organic nitrogen (DON), and bromide levels.

View Article and Find Full Text PDF

This review summarizes major findings over the last decade related to nitrosamines in drinking water, with a particular focus on N-nitrosodimethylamine (NDMA), because it is among the most widely detected nitrosamines in drinking waters. The reaction of inorganic dichloramine with amine precursors is likely the dominant mechanism responsible for NDMA formation in drinking waters. Even when occurrence surveys found NDMA formation in chlorinated drinking waters, it is unclear whether chloramination resulted from ammonia in the source waters.

View Article and Find Full Text PDF

Activated carbon (AC) has been shown to remove precursors of halogenated disinfection byproducts. Granular and powdered activated carbon (GAC, PAC) were investigated for their potential to adsorb N-nitrosodimethylamine (NDMA) precursors from blends of river water and effluent from a wastewater treatment plant (WWTP). At bench scale, waters were exposed to lignite or bituminous AC, either as PAC in bottle point experiments or as GAC in rapid small-scale column tests (RSSCTs).

View Article and Find Full Text PDF

Consumption of chlorinated drinking water has shown somewhat consistent association with increased risk of bladder cancer in a series of epidemiological studies, but plausible causative agents have not been identified. Halobenzoquinones (HBQs) have been recently predicted as putative disinfection byproducts (DBPs) that might be of toxicological relevance. This study reports the occurrence frequencies and concentrations of HBQs in plant effluents from nine drinking water treatment plants in the USA and Canada, where four common disinfection methods, chlorination, chloramination, chlorination with chloramination, and ozonation with chloramination, are used.

View Article and Find Full Text PDF