Purpose: To assess the benefit derived from the reduction of planning target volumes (PTVs) afforded by tumor motion management in treatment planning for lung cancer.
Methods: We use a simple formula that combines measurements of tumor motion and set-up error for 7 patients to determine PTVs based on the following scenarios: standard uniform 15 mm margin, individualized PTVs (no gating), spirometry-based gating, and active breath-control (ABC). We compare the percent volumes of lung receiving at least 20 Gy (V20) for a standard prescription, and the maximum tolerated doses (MTDs) at fixed V20.
Because of the importance of accurately defining the target in radiation treatment planning, we have developed a deformable-template algorithm for the semi-automatic delineation of normal tissue structures on computed tomography (CT) images. We illustrate the method by applying it to the spinal canal. Segmentation is performed in three steps: (a) partial delineation of the anatomic structure is obtained by wavelet-based edge detection; (b) a deformable-model template is fitted to the edge set by chamfer matching; and (c) the template is relaxed away from its original shape into its final position.
View Article and Find Full Text PDFThe purpose of this work is to estimate the uncertainty in the manual contouring of normal anatomical structures. The heart, esophagus, and spinal cord were contoured manually on six sets of computed tomography images by six dosimetrists whose experience ranged from 1 year to over 15 years. To determine the differences between inter- and intraobserver variations, each data set was contoured by one of the dosimetrists five times and once each by the five other dosimetrists.
View Article and Find Full Text PDF