Transcriptional reprogramming forms a major part of a plant's response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea.
View Article and Find Full Text PDFLeaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a high-resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence.
View Article and Find Full Text PDFMotivation: Identifying regulatory modules is an important task in the exploratory analysis of gene expression time series data. Clustering algorithms are often used for this purpose. However, gene regulatory events may induce complex temporal features in a gene expression profile, including time delays, inversions and transient correlations, which are not well accounted for by current clustering methods.
View Article and Find Full Text PDF