Publications by authors named "Stuart Mannering"

Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4 T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide.

View Article and Find Full Text PDF

Antigen-driven T-cell proliferation is often measured using fluorescent dye dilution assays, such as the CFSE-based proliferation assay. Dye dilution assays have been powerful tools to detect human CD4 T-cell responses, particularly against autoantigens. However, it is not known how many cells within the proliferating population are specific for the stimulating antigen.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that has a strong HLA association, where a number of self-epitopes have been implicated in disease pathogenesis. Human pancreatic islet-infiltrating CD4 T cell clones not only respond to proinsulin C-peptide (PI GQVELGGGPGAGSLQ) but also cross-react with a hybrid insulin peptide (HIP; PI-IAPP GQVELGGG-NAVEVLK) presented by HLA-DQ8. How T cell receptors recognize self-peptide and cross-react to HIPs is unclear.

View Article and Find Full Text PDF

In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining β2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses.

View Article and Find Full Text PDF
Article Synopsis
  • * Ongoing research focuses on understanding T-cell responses and developing effective disease-modifying agents that could be useful in the early stages of T1D.
  • * Advanced profiling techniques at the single-cell level aim to discover new biomarkers and improve assays for characterizing antigen-specific T cells, enhancing the ability to predict disease progression and treatment responses.
View Article and Find Full Text PDF
Article Synopsis
  • Type 1 diabetes (T1D) is an autoimmune disease where T-cells attack insulin-producing beta cells, and full-length C-peptide is recognized as a significant antigen involved in this process.
  • Researchers investigated whether modifying glutamine residues in C-peptide to glutamic acid (a process called deamidation) would enhance the immune response, using CD4 T-cell lines specific to C-peptide.
  • The study found that deamidation did not significantly increase the immune response to C-peptide; in fact, responses to deamidated C-peptide were generally weaker than to unmodified C-peptide, suggesting that deamidated C-peptide is not a major player in T1D autoimmunity.
View Article and Find Full Text PDF

HLA-DQ8, a genetic risk factor in type I diabetes (T1D), presents hybrid insulin peptides (HIPs) to autoreactive CD4+ T cells. The abundance of spliced peptides binding to HLA-DQ8 and how they are subsequently recognised by the autoreactive T cell repertoire is unknown. Here we report, the HIP (GQVELGGGNAVEVLK), derived from splicing of insulin and islet amyloid polypeptides, generates a preferred peptide-binding motif for HLA-DQ8.

View Article and Find Full Text PDF

Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8 T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice.

View Article and Find Full Text PDF

In 2016 Delong et al. discovered a new type of neoepitope formed by the fusion of two unrelated peptide fragments. Remarkably these neoepitopes, called hybrid insulin peptides, or HIPs, are recognized by pathogenic CD4 T cells in the NOD mouse and human pancreatic islet-infiltrating T cells in people with type 1 diabetes.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC) technology is increasingly being used to create models of monogenic human disorders. This is possible because, by and large, the phenotypic consequences of such genetic variants are often confined to a specific and known cell type, and the genetic variants themselves can be clearly identified and controlled for using a standardized genetic background. In contrast, complex conditions such as autoimmune Type 1 diabetes (T1D) have a polygenic inheritance and are subject to diverse environmental influences.

View Article and Find Full Text PDF

One hundred years ago, Frederick Banting, John Macleod, Charles Best and James Collip, and their collaborators, discovered insulin. This discovery paved the way to saving countless lives and ushered in the "Insulin Era." Since the discovery of insulin, we have made enormous strides in understanding its role in metabolism and diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • NALTs (nasal-associated lymphoid tissues) are important for immune responses to inhaled substances, but their functioning in immunity is not fully understood.
  • Research shows that conventional dendritic cells (cDCs) in NALTs usually suppress T cell activity, maintaining immune balance by preventing overreaction to inhaled antigens.
  • During infection, monocyte-derived DCs (moDCs) are recruited, altering the balance and allowing for T cell activation; an intranasal vaccine that recruits moDCs has been developed to enhance immune responses against intranasal immunization.
View Article and Find Full Text PDF

Seasonal influenza virus infections cause 290,000-650,000 deaths annually and severe morbidity in 3-5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified.

View Article and Find Full Text PDF

Type 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades.

View Article and Find Full Text PDF

Background: Although γδ T cells comprise up to 10% of human peripheral blood T cells, questions remain regarding their role in disease states and T-cell receptor (TCR) clonal expansions. We dissected anti-viral functions of human γδ T cells towards influenza viruses and defined influenza-reactive γδ TCRs in the context of γδ-TCRs across the human lifespan.

Methods: We performed Cr-killing assay and single-cell time-lapse live video microscopy to define mechanisms underlying γδ T-cell-mediated killing of influenza-infected targets.

View Article and Find Full Text PDF

Aims/hypothesis: Type 1 diabetes is an autoimmune disorder characterised by loss of insulin-producing beta cells of the pancreas. Progress in understanding the cellular and molecular mechanisms underlying the human disease has been hampered by a dearth of appropriate human experimental models. We previously reported the characterisation of islet-infiltrating CD4 T cells from a deceased organ donor who had type 1 diabetes.

View Article and Find Full Text PDF

Described is a simple, in vitro, dye dilution-based method for measuring antigen-specific CD4 T cell proliferation in human peripheral blood mononuclear cells (PBMCs). The development of stable, non-toxic, fluorescent dyes such as carboxyfluorescein succinimidyl ester (CFSE) allows for rare, antigen-specific T cells to be distinguished from bystanders by diminution in fluorescent staining, as detected by flow cytometry. This method has the following advantages over alternative approaches: (i) it is very sensitive to low-frequency T cells, (ii) no knowledge of the antigen or epitope is required, (iii) the phenotype of the responding cells can be analyzed, and (iv) viable, responding cells can be sorted and used for further analysis, such as T cell cloning.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) results from the progressive destruction of pancreatic β-cells in a process mediated primarily by T lymphocytes. The T1D research community has made dramatic progress in understanding the genetic basis of the disease as well as in the development of standardized autoantibody assays that inform both disease risk and progression. Despite these advances, there remains a paucity of robust and accepted biomarkers that can effectively inform on the activity of T cells during the natural history of the disease or in response to treatment.

View Article and Find Full Text PDF

Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1).

View Article and Find Full Text PDF

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8 T cells confer cross-protection against IAV strains, however the responses of CD8 T cells to IBV and ICV are understudied. We investigated the breadth of CD8 T cell cross-recognition and provide evidence of CD8 T cell cross-reactivity across IAV, IBV and ICV.

View Article and Find Full Text PDF

Diabetogenic T cells infiltrate the pancreatic islets by transmigrating across the microcapillaries residing close to, or within, the pancreatic islets. Deficiency in IFNγ signaling prevents efficient migration of T cells into the pancreatic islets, but the IFNγ-regulated molecules that mediate this are uncertain. Homing of autoreactive T cells into target tissues may require antigen specificity through presentation of cognate antigen by MHC expressed on the vascular endothelium.

View Article and Find Full Text PDF

Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of pancreatic insulin-producing beta cells. The epitopes recognised by pathogenic T cells in human type 1 diabetes are poorly defined; however, a growing body of evidence suggests that T cell responses against neoepitopes contribute to beta cell destruction in type 1 diabetes. Neoepitopes are formed when self-proteins undergo post-translational modification to create a new epitope that is recognised by T- or B cells.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells, found within the islets of Langerhans in the pancreas, are destroyed by islet-infiltrating T cells. Identifying the antigenic targets of beta-cell reactive T cells is critical to gain insight into the pathogenesis of T1D and develop antigen-specific immunotherapies. Several lines of evidence indicate that insulin is an important target of T cells in T1D.

View Article and Find Full Text PDF

CD8 T cells recognizing antigenic peptides derived from conserved internal viral proteins confer broad protection against distinct influenza viruses. As memory CD8 T cells change throughout the human lifetime and across tissue compartments, we investigated how T cell receptor (TCR) composition and diversity relate to memory CD8 T cells across anatomical sites and immunological phases of human life. We used peptide-HLA tetramer magnetic enrichment, single-cell multiplex RT-PCR for both the TCR-alpha (TCRα) and TCR-beta (TCRβ) chains, and new TCRdist and grouping of lymphocyte interactions by paratope hotspots (GLIPH) algorithms to compare TCRs directed against the most prominent human influenza epitope, HLA-A*02:01-M1 (A2M1).

View Article and Find Full Text PDF

Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (T) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood.

View Article and Find Full Text PDF