Publications by authors named "Stuart M Holmes"

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

Background: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences.

Results: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.

View Article and Find Full Text PDF

Perovskite and spinel oxides are promising alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Herein, a novel perovskite/spinel nanocomposite comprised of SrCoFeO and CoFeO (SCF/CF) is prepared through a simple one-step method that incorporates iron doping into a SrCoO matrix, circumventing complex fabrication processes typical of these materials. At a Fe dopant content of 60%, the CoFeO spinel phase is directly precipitated from the parent SrCoFeO perovskite phase and the number of active B-site metals (Co/Fe) in the parent SCF can be maximized.

View Article and Find Full Text PDF

The anion exchange membrane fuel cell (AEMFC), which can operate in alkaline media, paves a promising avenue for the broad application of earth-abundant element based catalysts. Recent pioneering studies found that zirconium nitride (ZrN) with low upfront capital cost can exhibit high activity, even surpassing that of Pt in alkaline oxygen reduction reaction (ORR). However, the origin of its superior ORR activity was not well understood.

View Article and Find Full Text PDF

Operation of proton-exchange membrane fuel cells is highly deteriorated by mass transfer loss, which is a result of spatial and temporal interaction between airflow, water flow, channel geometry, and its wettability. Prediction of two-phase flow dynamics in gas channels is essential for the optimization of the design and operating of fuel cells. We propose a mechanistic discrete particle model (DPM) to delineate dynamic water distribution in fuel cell gas channels and optimize the operating conditions.

View Article and Find Full Text PDF

We report a rapid solution-phase strategy to synthesize alloyed PtNi nanoparticles which demonstrate outstanding functionality for the oxygen reduction reaction (ORR). This one-pot coreduction colloidal synthesis results in a monodisperse population of single-crystal nanoparticles of rhombic dodecahedral morphology with Pt-enriched edges and compositions close to PtNi. We use nanoscale 3D compositional analysis to reveal for the first time that oleylamine (OAm)-aging of the rhombic dodecahedral PtNi particles results in Ni leaching from surface facets, producing aged particles with concave faceting, an exceptionally high surface area, and a composition of PtNi.

View Article and Find Full Text PDF

In this study, we present the use of sucrose (CHO), which exists in abundance in nature, to prepare a carbon membrane without any preceding treatments. The preparation procedure was conducted using a low pyrolysis temperature, , in the range of 300-500 °C, followed by complete formation of the structure of the carbon membrane. The gas separation characteristics of the resulting membranes were assessed by evaluating both hydrogen and methane permeation.

View Article and Find Full Text PDF

A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder.

View Article and Find Full Text PDF

Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy.

View Article and Find Full Text PDF

Understanding the nature of the interface between nanofibers and polymer resins in composite materials is challenging because of the complexity of interactions that may occur between fibers and between the matrix and the fibers. The ability to select the most efficient amount of reinforcement for stress transfer, making a saving on both cost and weight, is also a key part of composite design. The use of Raman spectroscopy to investigate micromechanical properties of laminated bacterial cellulose (BC)/poly(l-lactic) acid (PLLA) resin composites is reported for the first time as a means for understanding the fundamental stress-transfer processes in these composites, but also as a tool to select appropriate processing and volume fraction of the reinforcing fibers.

View Article and Find Full Text PDF

The modification of the liquid/liquid interface with membranes of silicalite, a neutral framework zeolite, is used to extend the potential window. This feature allows the observation of the transfer of extremely hydrophilic ions, due to the size-exclusion of organic ions from the interior of the zeolitic framework. Similarly, volume exclusion effects are shown to affect facilitated ion transfer processes involving alkali metal cations.

View Article and Find Full Text PDF