Publications by authors named "Stuart J Mills"

The re-investigation of [BiO(OH)](NO), dioxidodibismuth(III) hydroxide nitrate, on the basis of single-crystal X-ray diffraction data revealed an apparent structural phase transition of a crystal structure determined previously (space group 2 at 173 K) to a crystal structure with lower symmetry (space group 2 at 100 K). The 2 → 2 group-subgroup relationship between the two crystal structures is with index 2. In contrast to the crystal structure in 2 with orientational disorder of the nitrate anion, disorder does not occur in the 2 structure.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients' own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells.

View Article and Find Full Text PDF

TLR4 plays a pivotal role in orchestrating inflammation and tissue repair. Its expression has finally been balanced to initiate the early, robust immune response necessary for efficient repair without excessively amplifying and prolonging inflammation, which impairs healing. Studies show Flightless I (Flii) is an immunomodulator that negatively regulates macrophage TLR4 signalling.

View Article and Find Full Text PDF

Synthetic and naturally occurring forms of tricopper orthotellurate, CuTeO (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, CuTeO is shown to occur in two polytypes. The higher-symmetric CuTeO-1C polytype is cubic, space group Ia3, with a = 9.

View Article and Find Full Text PDF

Pericytes have the potential to be developed as a cell therapy for the treatment of wounds; however, the efficacy of any cell therapy relies on the successful delivery of intact and functioning cells. Here, the effect of delivering pericytes on wound repair was assessed alongside the development of a surface-functionalized pericyte patch. Plasma polymerization (PP) was used to functionalize the surface of silicone patches with heptylamine (HA) or acrylic acid (AA) monomers.

View Article and Find Full Text PDF

Stem cells have been shown to have potential as a new therapy for burns and promote wound healing through decreasing inflammation and increasing angiogenesis. Multipotent adult progenitor cells (MAPC® cells) are a subpopulation of bone marrow-derived stem cells with outstanding self-renewal and differentiation capacity. MAPC cells also secrete a wide range of cytokines which can affect cellular activities.

View Article and Find Full Text PDF
Article Synopsis
  • * This study examines a modified surface dressing to improve the cryopreservation process for multipotent adult progenitor cells (MAPC) by optimizing attachment times and enhancing cell recovery.
  • * By functionalizing the surface with hyaluronic acid, the research found a way to delay cell spreading, allowing for better cryopreservation outcomes and increased recovery of adhered cells.
View Article and Find Full Text PDF

Healing of the skin and oral mucosa utilises similar mechanisms of tissue repair, however, scarring and the rate of wound closure is vastly superior in the oral cavity suggesting differences between these two environments. One key difference is the phenotype of dermal fibroblasts compared to fibroblasts of gingival tissues. Human gingival fibroblasts (hGFs) are undifferentiated cells with multi-differentiation and self-renewal capacities.

View Article and Find Full Text PDF

The use of mesenchymal stem cells (MSC) for the treatment of cutaneous wounds is currently of enormous interest. However, the broad translation of cell therapies into clinical use is hampered by their efficacy, safety, manufacturing and cost. MSCs release a broad repertoire of trophic factors and immunomodulatory cytokines, referred to as the MSC secretome, that has considerable potential for the treatment of cutaneous wounds as a cell-free therapy.

View Article and Find Full Text PDF

Crystals of the first synthetic copper tellurite arsenate, Cu(TeO)(AsO) [systematic name pentacopper(II) bis-oxotellurate(IV) bis-oxoarsenate(V)], were grown by the chemical vapour transport method and structurally determined using single-crystal X-ray diffraction. Cu(TeO)(AsO) possesses a novel structure type including a new topological arrangement of Cu and O atoms. Cu(TeO)(AsO) is formed from a framework of two types of Jahn-Teller distorted [CuO] octahedra (one of which is considerably elongated) and [CuO] square pyramids, which are linked by edge-sharing to form chains and dimers and by corner-sharing to complete a three-dimensional framework.

View Article and Find Full Text PDF

Pericytes are peri-vascular mural cells which have an important role in the homeostatic regulation of inflammatory and angiogenic processes. Flightless I (Flii) is a cytoskeletal protein involved in regulating cellular functions, but its involvement in pericyte activities during wound healing is unknown. Exacerbated inflammation and reduced angiogenesis are hallmarks of impaired diabetic healing responses, and strategies aimed at regulating these processes are vital for improving healing outcomes.

View Article and Find Full Text PDF

Background: Stem cell therapies have been widely investigated for their healing effects. However, the translation of these therapies has been hampered by the requirement to deliver live allogeneic or autologous cells directly to the wound in a clinical setting. Multipotent adult progenitor cells (MAPC® cells) are a subpopulation of bone marrow-derived adherent stem cells that secrete a wide range of factors known to accelerate the wound healing process.

View Article and Find Full Text PDF

A new superstructure of the mineral camerolaite, CuAl(OH)(HO)[Sb(OH)](SO), has been refined in space group P\bar 1 with unit-cell parameters a = 7.7660 (16), b = 8.759 (4), c = 11.

View Article and Find Full Text PDF

Much of current research investigates the beneficial properties of mesenchymal stem cells (MSCs) as a treatment for wounds and other forms of injury. In this review, we bring attention to and discuss the role of the pericyte, a cell type which shares much of the differentiation potential and regenerative properties of the MSC as well as specific roles in the regulation of angiogenesis, inflammation and fibrosis. Pericytes have been identified as dysfunctional or depleted in many disease states, and observing the outcomes of pericyte perturbation in models of disease and wound healing informs our understanding of overall pericyte function and identifies these cells as an important target in the development of therapies to encourage healing.

View Article and Find Full Text PDF

Culture surfaces that substantially reduce the degree of cell manipulation in the delivery of cell sheets to patients are described. These surfaces support the attachment, culture, and delivery of multipotent adult progenitor cells (MAPC). It was essential that the processes of attachment/detachment to the surface did not affect cell phenotype nor the function of the cultured cells.

View Article and Find Full Text PDF

A new hydrated yttrium copper tellurite nitrate, yttrium(III) copper(II) bis-[trioxidotellurate(IV)] nitrate trihydrate, has been synthesized hydro-thermally in a Teflon-lined autoclave and structurally determined using synchrotron radiation. The new phase is the first example containing yttrium, copper and tellurium in one structure. Its crystal structure is unique, with relatively strongly bound layers extending parallel to (020), defined by YO8, CuO4 and TeO3 polyhedra, while the NO3 (-) anions and one third of the water mol-ecules lie between those layers.

View Article and Find Full Text PDF

Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase.

View Article and Find Full Text PDF

The Distortion Theorem implies that the irregularity of bond distances in a distorted coordination polyhedron causes an increase of mean bond distance. Examination of 40 polyhedra containing the lone-pair cation Te(IV) shows that this does not imply an increase in polyhedral volume. Volumes of these polyhedra are 10.

View Article and Find Full Text PDF

Bond-valence parameters r0 and b have been re-determined for Te(IV)-O: r0 = 1.9605 Å, b = 0.41; Te(VI)-O: r0 = 1.

View Article and Find Full Text PDF

Impaired wound healing and ulceration represent a serious complication of both type 1 and type 2 diabetes. Cytoskeletal protein Flightless I (Flii) is an important inhibitor of wound repair, and reduced Flii gene expression in fibroblasts increased migration, proliferation, and adhesion. As such it has the ability to influence all phases of wound healing including inflammation, remodelling and angiogenesis.

View Article and Find Full Text PDF

Pericytes are cells that reside on the wall of the blood vessels and their primary function is to maintain the vessel integrity. Recently, it has been realized that pericytes have a much greater role than just the maintenance of vessel integrity essential for the development and formation of a vascular network. Pericytes also have stem cell-like properties and are seemingly able to differentiate into adipocytes, chondrocytes, osteoblasts and granulocytes, leading them to be identified as mesenchymal stem cells (MSCs).

View Article and Find Full Text PDF

The silico-phosphate mineral perhamite has been studied using a combination of electron and vibrational spectroscopy. SEM photomicrographs reveal that perhamite morphology consists of very thin intergrown platelets that can form a variety of habits. Infrared spectroscopy in the hydroxyl-stretching region shows a number of overlapping bands which are observed in the range 3581-3078 cm(-1).

View Article and Find Full Text PDF

Impaired wound healing states in the elderly lead to substantial morbidity and mortality, and a cost to the health services of over 9 billion dollars per annum. In addition to intrinsic ageing processes that per se cause delayed healing, studies have suggested marked differences in wound repair between the sexes. We have previously reported that, castration of male mice results in a striking acceleration of local cutaneous wound healing and dampens the associated inflammatory response.

View Article and Find Full Text PDF