Publications by authors named "Stuart Grice"

Human immunodeficiency virus type 1 (HIV-1) infection can result in HIV-associated neurocognitive disorder (HAND), a spectrum of disorders characterized by neurological impairment and chronic inflammation. Combined antiretroviral therapy (cART) has elicited a marked reduction in the number of individuals diagnosed with HAND. However, there is continual, low-level viral transcription due to the lack of a transcription inhibitor in cART regimens, which results in the accumulation of viral products within infected cells.

View Article and Find Full Text PDF

The HIV-1 transactivator protein Tat interacts with the transactivation response element (TAR) at the three-nucleotide UCU bulge to facilitate the recruitment of transcription elongation factor-b (P-TEFb) and induce the transcription of the integrated proviral genome. Therefore, the Tat-TAR interaction, unique to the virus, is a promising target for developing antiviral therapeutics. Currently, there are no FDA-approved drugs against HIV-1 transcription, suggesting the need to develop novel inhibitors that specifically target HIV-1 transcription.

View Article and Find Full Text PDF

The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required.

View Article and Find Full Text PDF

Targeting structured RNA elements in the SARS-CoV-2 viral genome with small molecules is an attractive strategy for pharmacological control over viral replication. In this work, we report the discovery of small molecules that target the frameshifting element (FSE) in the SARS-CoV-2 RNA genome using high-throughput small-molecule microarray (SMM) screening. A new class of aminoquinazoline ligands for the SARS-CoV-2 FSE are synthesized and characterized using multiple orthogonal biophysical assays and structure-activity relationship (SAR) studies.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenerative disease, and is characterised by spinal motor neuron loss, impaired motor function and, often, premature death. Mutations and deletions in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA; however, the mechanisms underlying the selectivity of motor neuron degeneration are not well understood. Although SMA is degenerative in nature, SMN function during embryonic and early postnatal development appears to be essential for motor neuron survival in animal models and humans.

View Article and Find Full Text PDF

Multiple ssRNA viruses which infect bacteria, plants or humans use RNA Packaging Signal (PS)-mediated regulation during assembly to package their genomes faithfully and efficiently. PSs typically comprise short nucleotide recognition motifs, most often presented in the unpaired region of RNA stem-loops, and often bind their cognate coat proteins (CPs) with nanomolar affinity. PSs identified to date are resilient in the face of the typical error prone replication of their virus-coded polymerases, making them potential drug targets.

View Article and Find Full Text PDF

RNA sequences/motifs dispersed across the genome of Hepatitis B Virus regulate formation of nucleocapsid-like particles (NCPs) by core protein (Cp) in vitro, in an epsilon/polymerase-independent fashion. These multiple RNA Packaging Signals (PSs) can each form stem-loops encompassing a Cp-recognition motif, -RGAG-, in their loops. Drug-like molecules that bind the most important of these PS sites for NCP assembly regulation with nanomolar affinities, were identified by screening an immobilized ligand library with a fluorescently-labelled, RNA oligonucleotide encompassing this sequence.

View Article and Find Full Text PDF

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function.

View Article and Find Full Text PDF

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral polymerase with a -acting regulatory signal, designated epsilon (ε), located at the 5'-end of its pre-genomic RNA (pgRNA). Binding of polymerase to ε is also necessary for pgRNA encapsidation. While the mechanistic basis of this interaction remains elusive, mutagenesis studies suggest its internal 6-nt "priming loop" provides an important structural contribution.

View Article and Find Full Text PDF

Just as eukaryotic circular RNA (circRNA) is a product of intracellular backsplicing, custom circRNA can be synthesized in vitro using a transcription template in which transposed halves of a split group I intron flank the sequence of the RNA to be circularized. Such permuted intron-exon (PIE) constructs have been used to produce circRNA versions of ribozymes, mimics of viral RNA motifs, a streptavidin aptamer, and protein expression vectors for genetic engineering and vaccine development. One limitation of this approach is the obligatory incorporation of small RNA segments (E1 and E2) into nascent circRNA at the site of end-joining.

View Article and Find Full Text PDF

Bioisosteric replacement and scaffold hopping are powerful strategies in drug design useful for rationally modifying a hit compound towards novel lead therapeutic agents. Recently, we reported a series of thienopyrimidinones that compromise dynamics at the p66/p51 HIV-1 reverse transcriptase (RT)-associated Ribonuclease H (RNase H) dimer interface, thereby allosterically interrupting catalysis by altering the active site geometry. Although they exhibited good submicromolar activity, the isosteric replacement of the thiophene ring, a potential toxicophore, is warranted.

View Article and Find Full Text PDF

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a -acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis.

View Article and Find Full Text PDF

The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS.

View Article and Find Full Text PDF

Nucleocytoplasmic transport of unspliced and partially spliced human immunodeficiency virus (HIV) RNA is mediated in part by the Rev response element (RRE), a ~350 nt cis-acting element located in the envelope coding region of the viral genome. Understanding the interaction of the RRE with the viral Rev protein, cellular co-factors, and its therapeutic potential has been the subject of almost three decades of structural studies, throughout which a recurring discussion theme has been RRE topology, i.e.

View Article and Find Full Text PDF

Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells.

View Article and Find Full Text PDF

Targeting RNA offers the potential in many diseases of a therapeutic treatment. Due to its large surface area and ability to adopt different conformations, targeting RNA has proven challenging. Medium-sized branched peptides are of the size to competitively bind RNA while remaining cell permeable, stable in vivo, and non-toxic.

View Article and Find Full Text PDF

Aberrant splicing in exon 11 of the LMNA gene causes the premature aging disorder Hutchinson-Gilford Progeria Syndrome. A de novo C1824T mutation activates an internal alternative 5' splice site, resulting in formation of the disease-causing progerin protein. The underlying mechanism for this 5' splice site selection is unknown.

View Article and Find Full Text PDF

Interaction of HIV-1 rev response element (RRE) RNA with its cognate protein, Rev, is critical for HIV-1 replication. Understanding the mode of interaction between RRE RNA and ligands at the binding site can facilitate RNA molecular recognition as well as provide a strategy for developing anti-HIV therapeutics. Our approach utilizes branched peptides as a scaffold for multivalent binding to RRE IIB (high affinity rev binding site) with incorporation of unnatural amino acids to increase affinity via non-canonical interactions with the RNA.

View Article and Find Full Text PDF

The HIV-1 Rev response element (RRE) is a -acting RNA element characterized by multiple stem-loops. Binding and multimerization of the HIV Rev protein on the RRE promote the nucleocytoplasmic export of incompletely spliced mRNAs, an essential step in HIV replication. Most of our understanding of the Rev-RRE regulatory axis comes from studies of lab-adapted HIV clones.

View Article and Find Full Text PDF

Metastasis-associated lung adenocarcinoma transcript 1 ( Malat1/ MALAT1, mouse/human), a highly conserved long noncoding (lnc) RNA, has been linked with several physiological processes, including the alternative splicing, nuclear organization, and epigenetic modulation of gene expression. MALAT1 has also been implicated in metastasis and tumor proliferation in multiple cancer types. The 3' terminal stability element for nuclear expression (ENE) assumes a triple-helical configuration that promotes its nuclear accumulation and persistent function.

View Article and Find Full Text PDF

The 4th Summer School on Innovative Approaches for the Identification of Antiviral Agents (IAAASS) was held at the Sardegna Ricerche Research Park in Santa Margherita di Pula, Sardinia, Italy from September 24-28, 2018. The Summer School assembled 21 internationally recognized experts and 46 graduate and postgraduate students, with the goal of discussing advances in antiviral drug discovery from the perspective of high-throughput screening, medicinal chemistry, computational chemistry, virology, molecular and structural biology. The meeting format involved three components: (a) morning sessions of plenary talks/overviews from invited speakers, (b) afternoon sessions of posters and short presentations from student participants, and (c) informal small-group discussions between students and participating faculty.

View Article and Find Full Text PDF

Background: We previously reported Kaposi sarcoma-associated herpesvirus (KSHV) microRNA sequence variants in clinical samples correlated with increased risk of multicentric Castleman's disease (MCD). We then demonstrated that microRNAs with variant sequence have different maturation and mature microRNA expression . Here, we illustrate the association between microRNA sequence and changes in mature microRNA levels within Kaposi sarcoma (KS) lesions.

View Article and Find Full Text PDF

risk alleles associate with chronic kidney disease in African Americans, but the mechanisms remain to be fully understood. We show that risk alleles activate protein kinase R (PKR) in cultured cells and transgenic mice. This effect is preserved when a premature stop codon is introduced to risk alleles, suggesting that RNA but not protein is required for the effect.

View Article and Find Full Text PDF