Publications by authors named "Stuart F Le Grice"

We synthesized and screened a unique 46 656-member library composed of unnatural amino acids that revealed several hits against RRE IIB RNA. Among the hit peptides identified, peptide 4A5 was found to be selective against competitor RNAs and inhibited HIV-1 Rev-RRE RNA interaction in cell culture in a p24 ELISA assay. Biophysical characterization in a ribonuclease protection assay suggested that 4A5 bound to the stem-loop region in RRE IIB while SHAPE MaP probing with 234 nt RRE RNA indicated additional interaction with secondary Rev binding sites.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have emerged as key players in gene regulation. However, our incomplete understanding of the structure of lncRNAs has hindered molecular characterization of their function. Maternally expressed gene 3 (Meg3) lncRNA is a tumor suppressor that is downregulated in various types of cancer.

View Article and Find Full Text PDF

Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme.

View Article and Find Full Text PDF

HIV Reverse Transcriptase-associated ribonuclease H activity is a promising enzymatic target for drug development that has not been successfully targeted in the clinic. While the α-hydroxytropolone-containing natural products β-thujaplicinol and manicol have emerged as some of the most potent leads described to date, structure-function studies have been limited to the natural products and semi-synthetic derivatives of manicol. Thus, a library of α-hydroxytropolones synthesized through a convenient oxidopyrylium cycloaddition/ring-opening sequence have been tested in and cell-based assays, and have been analyzed using computational support.

View Article and Find Full Text PDF

α-Hydroxytropolones are established inhibitors of several therapeutically relevant binuclear metalloenzymes, and thus lead drug targets for various human diseases. We have leveraged a recently-disclosed three-component oxidopyrylium cycloaddition in the first solid-phase synthesis of α-hydroxytropolones. We also showed that, while minor impurities exist after cleavage and aqueous wash, the semi-crude products display activity in HIV RT-associated RNaseH enzymatic and cell-based assays consistent with pure molecules made in solution phase.

View Article and Find Full Text PDF

Small molecules that bind to RNA potently and specifically are relatively rare. The study of molecules that bind to the HIV-1 transactivation response (TAR) hairpin, a cis-acting HIV genomic element, has long been an important model system for the chemistry of targeting RNA. Here we report the synthesis, biochemical, and structural evaluation of a series of molecules that bind to HIV-1 TAR RNA.

View Article and Find Full Text PDF

The third Summer School on Innovative Approaches for Identification of Antiviral Agents (IAAASS) was held from September 28th to October 2nd, 2016 at the Sardegna Ricerche Research Park in Santa Margherita di Pula, Sardinia, Italy. The school brought together graduate students and postdoctoral fellows early in their careers with a faculty of internationally recognized experts, to encourage the sharing of knowledge and experience in virology research and drug development in an informal and interactive environment. The first IAAASS was held in Sardinia in 2012 and the second in 2014.

View Article and Find Full Text PDF

Finding the target site and associating in a specific orientation are essential tasks for DNA-binding proteins. In order to make the target search process as efficient as possible, proteins should not only rapidly diffuse to the target site but also dynamically explore multiple local configurations before diffusing away. Protein flipping is an example of this second process that has been observed previously, but the underlying mechanism of flipping remains unclear.

View Article and Find Full Text PDF

Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events.

View Article and Find Full Text PDF

Potent and selective recognition and modulation of disease-relevant RNAs remain a daunting challenge. We previously examined the utility of the U1A N-terminal RNA recognition motif as a scaffold for tailoring new RNA hairpin recognition and showed that as few as one or two mutations can result in moderate affinity (low μM dissociation constant) for the human immunodeficiency virus (HIV) trans-activation response element (TAR) RNA, an RNA hairpin controlling transcription of the human immunodeficiency virus (HIV) genome. Here, we use yeast display and saturation mutagenesis of established RNA-binding regions in U1A to identify new synthetic proteins that potently and selectively bind TAR RNA.

View Article and Find Full Text PDF

Despite the significant progress achieved with combination antiretroviral therapy in the fight against human immunodeficiency virus (HIV) infection, the difficulty to eradicate the virus together with the rapid emergence of multidrug-resistant strains clearly underline a pressing need for innovative agents, possibly endowed with novel mechanisms of action. In this context, owing to its essential role in HIV genome replication, the reverse transcriptase associated ribonuclease H (RNase H) has proven to be an appealing target. To identify new RNase H inhibitors, an in-house cycloheptathiophene-3-carboxamide library was screened; this led to compounds endowed with inhibitory activity, the structural optimization of which led to the catechol derivative 2-(3,4-dihydroxybenzamido)-N-(pyridin-2-yl)-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (compound 33) with an IC50 value on the RNase H activity in the nanomolar range.

View Article and Find Full Text PDF

The natural product α-hydroxytropolones manicol and β-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized.

View Article and Find Full Text PDF

The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both activities could represent a significant advance towards better anti-HIV therapies.

View Article and Find Full Text PDF

Proton assignment of nuclear magnetic resonance (NMR) spectra of homopyrimidine/homopurine tract oligonucleotides becomes extremely challenging with increasing helical length due to severe cross-peak overlap. As an alternative to the more standard practice of (15)N and (13)C labeling of oligonucleotides, here, we describe a method for assignment of highly redundant DNA sequences that uses single-site substitution of the thymine isostere 2,4-difluoro-5-methylbenzene (dF). The impact of this approach in facilitating the assignment of intractable spectra and analyzing oligonucleotide structure and dynamics is demonstrated using A-tract and TATA box DNA and two polypurine tract-containing RNA:DNA hybrids derived from HIV-1 and the Saccharomyces cerevisiae long-terminal repeat-containing retrotransposon Ty3.

View Article and Find Full Text PDF

Functional analysis of viral RNA requires knowledge of secondary structure arrangements and tertiary base interactions. Thus, high-throughput and comprehensive methods for assessing RNA structure are highly desirable. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) has proven highly useful for modeling the secondary structures of HIV and other retroviral RNAs in recent years.

View Article and Find Full Text PDF

Unlabelled: Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of viral expression. In the present study, we investigated the Rex dependence of the complete set of alternatively spliced HTLV-1 mRNAs. Analyses of cells transfected with Rex-wild-type and Rex-knockout HTLV-1 molecular clones using splice site-specific quantitative reverse transcription (qRT)-PCR revealed that mRNAs encoding the p30Tof, p13, and p12/8 proteins were Rex dependent, while the p21rex mRNA was Rex independent.

View Article and Find Full Text PDF

Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg(2+).

View Article and Find Full Text PDF

Replication of retroviruses and transposition of endogenous retroelements exploits a unique mechanism of post-transcriptional regulation as a means of exporting their incompletely-spliced mRNAs (which serve as both the genomic RNA and the template for protein synthesis). Following discovery of the Rev response element (RRE) that mediates nucleocytoplasmic export of the full-length and singly-spliced human immunodeficiency virus type 1 (HIV-1) genome, equivalent -acting regulatory elements have been characterized for both complex and simple retroviruses and retroelements, together with the obligate viral and host proteins with which they interact. The exception to this is the gammaretrovirus family of simple retroviruses, exemplified by reticuloendotheliosis virus (REV), murine leukemia virus (MLV) and xenotropic MLV-related retrovirus (XMRV).

View Article and Find Full Text PDF

Unlabelled: Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding.

View Article and Find Full Text PDF

HIV-1 Rev is an ~13 kD accessory protein expressed during the early stage of virus replication. After translation, Rev enters the nucleus and binds the Rev response element (RRE), a ~350 nucleotide, highly structured element embedded in the env gene in unspliced and singly spliced viral RNA transcripts. Rev-RNA assemblies subsequently recruit Crm1 and other cellular proteins to form larger complexes that are exported from the nucleus.

View Article and Find Full Text PDF

Bifunctional quinolinonyl DKA derivatives were first described as nonselective inhibitors of 3'-processing (3'-P) and strand transfer (ST) functions of HIV-1 integrase (IN), while 7-aminosubstituted quinolinonyl derivatives were proven IN strand transfer inhibitors (INSTIs) that also displayed activity against ribonuclease H (RNase H). In this study, we describe the design, synthesis, and biological evaluation of new quinolinonyl diketo acid (DKA) derivatives characterized by variously substituted alkylating groups on the nitrogen atom of the quinolinone ring. Removal of the second DKA branch of bifunctional DKAs, and the amino group in position 7 of quinolinone ring combined with a fine-tuning of the substituents on the benzyl group in position 1 of the quinolinone, increased selectivity for IN ST activity.

View Article and Find Full Text PDF

Converting single-stranded viral RNA into double stranded DNA for integration is an essential step in HIV-1 replication. Initial polymerization of minus-strand DNA is primed from a host derived tRNA, whereas subsequent plus-strand synthesis requires viral primers derived from the 3' and central polypurine tracts (3' and cPPTs). The 5' and 3' termini of these conserved RNA sequence elements are precisely cleaved by RT-associated RNase H to generate specific primers that are used to initiate plus-strand DNA synthesis.

View Article and Find Full Text PDF

The HIV Rev protein forms a complex with a 351 nucleotide sequence present in unspliced and incompletely spliced human immunodeficiency virus (HIV) mRNAs, the Rev response element (RRE), to recruit the cellular nuclear export receptor Crm1 and Ran-GTP. This complex facilitates nucleo-cytoplasmic export of these mRNAs. The precise secondary structure of the HIV-1 RRE has been controversial, since studies have reported alternative structures comprising either four or five stem-loops.

View Article and Find Full Text PDF

Small molecules targeting the enzymes responsible for human immunodeficiency virus (HIV) maturation, DNA synthesis and its subsequent chromosomal integration as ribonucleotide-free double-stranded DNA remain the mainstay of combination antiretroviral therapy. For infected individuals harboring drug-susceptible virus, this approach has afforded complete or near-complete viral suppression. However, in the absence of a curative strategy, the predictable emergence of drug-resistant variants requires continued development of improved antiviral strategies, inherent to which is the necessity of identifying novel targets.

View Article and Find Full Text PDF