Publications by authors named "Stuart Calderwood"

This study identified tumorigenic processes most dependent on murine heat shock protein 72 (HSP72) in the mouse mammary tumor virus-PyMT mammary tumor model, which give rise to spontaneous mammary tumors that exhibit HSP72-dependent metastasis to the lung. RNA-seq expression profiling of Hspa1a/Hspa1b (Hsp72) WT and Hsp72 primary mammary tumors discovered significantly lower expression of genes encoding components of the extracellular matrix (ECM) in Hsp72 knockout mammary tumors compared to WT controls. In vitro studies found that genetic or chemical inhibition of HSP72 activity in cultured collagen-expressing human or murine cells also reduces mRNA and protein levels of COL1A1 and several other ECM-encoding genes.

View Article and Find Full Text PDF
Article Synopsis
  • Innate immune responses help manage inflammation caused by cell damage while minimizing excessive reactions.
  • Hsp70, released by damaged cells, can trigger varying immune responses depending on how it interacts with myeloid cell receptors.
  • The study shows that extracellular mouse Hsp70 binds to a receptor complex that includes both an inhibitory receptor (Siglec-E) and an activating receptor (LOX-1), which helps modulate inflammation effectively.
View Article and Find Full Text PDF

We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen-processing machinery of dendritic cells through the cell fusion process, and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells.

View Article and Find Full Text PDF

Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by surface receptors expressed on a wide range of cell types, including immune cells. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are key stress proteins induced in cells exposed to proteotoxic insult and are critical for thermotolerance. The dynamic network of chaperone interactions, known as the chaperome, contributes significantly to the proteotoxic cell response and the malignant phenotype in cancer. We identified a potent microRNA, miR-570 that could bind the 3'untranslated regions of multiple HSP mRNAs and inhibit HSP synthesis.

View Article and Find Full Text PDF

RNA sequencing (RNA-seq) is a powerful method of transcriptional analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq can be used for differential gene expression (DGE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology or pathway analysis to provide insight into processes altered between biological conditions.

View Article and Find Full Text PDF

Heat shock proteins (HSP) are rapidly induced after proteotoxic stresses such as heat shock and accumulate at high concentrations in cells. HSP induction involves primarily a family of heat shock transcription factors (HSF) that bind the heat shock elements of the HSP genes and mediate transcription in trans. We discuss methods for the study of HSP binding to HSP promoters and the consequent increases in HSP gene expression in vitro and in vivo.

View Article and Find Full Text PDF

The cell stress response is an essential system present in every cell for responding and adapting to environmental stimulations. A major program for stress response is the heat shock factor (HSF)-heat shock protein (HSP) system that maintains proteostasis in cells and promotes cancer progression. However, less is known about how the cell stress response is regulated by alternative transcription factors.

View Article and Find Full Text PDF

Protein homeostasis involves a number of overlapping mechanisms, including the autophagy program, that can lead to the resolution of protein damage. We aimed in this study to examine mechanisms of autophagy in the proteotoxic stress response. We found that such stress results in a rapid elevation in the rate of autophagy in mammalian cells.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a reversible cellular program that transiently places epithelial (E) cells into pseudo-mesenchymal (M) cell states. The malignant progression and resistance of many carcinomas depend on EMT activation, partial EMT, or hybrid E/M status in neoplastic cells. EMT is activated by tumor microenvironmental TGFβ signal and EMT-inducing transcription factors, such as ZEB1/2, in tumor cells.

View Article and Find Full Text PDF

The co-chaperone p50/Cdc37 is an important partner for Hsp90, assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Analysis of the structure of Hsp90-Cdc37-kinase complexes demonstrates the way in which Cdc37 interacts with and controls the folding of a large proportion of intracellular protein kinases. This co-chaperone thus stands at the hub of a multitude of intracellular signaling networks.

View Article and Find Full Text PDF

The dynamic network of chaperone interactions known as the chaperome contributes significantly to the proteotoxic cell response and the malignant phenotype. To bypass the inherent redundancy in the network, we have used a microRNA (mir) approach to target multiple members of the chaperome simultaneously. We identified a potent microRNA, miR-570 that could bind the 3'untranslated regions of multiple HSP mRNAs and inhibit HSP synthesis.

View Article and Find Full Text PDF

Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain.

View Article and Find Full Text PDF

The zinc finger transcription factor EGR4 has previously been identified as having a critical role in the proliferation of small cell lung cancer. Here, we have identified a novel, shortened splice variant of this transcription factor (EGR4-S) that is regulated by Heat Shock Factor-1 (HSF1). Our findings demonstrate that the shortened variant (EGR4-S) is upregulated with high EGFR, HER2, and H-Ras-expressing breast cell lines, and its expression is inhibited in response to HER pathway inhibitors.

View Article and Find Full Text PDF

Single cell and multicellular organisms encounter physical stress from their environment as well as behavioral stress experienced in more complex organisms. As these stresses can present an existential threat, organisms respond with a coordinated response at the tissue and cellular level, the heat shock response (HSR) and this was the major theme of the symposium. Much of the meeting was concentrated on the heat shock proteins (HSPs), the effector molecules of the response.

View Article and Find Full Text PDF

Cancer extracellular vesicles (EVs), or exosomes, promote tumor progression through enhancing tumor growth, initiating epithelial-to-mesenchymal transition, remodeling the tumor microenvironment, and preparing metastatic niches. Three-dimensionally (3D) cultured tumoroids / spheroids aim to reproduce some aspects of tumor behavior in vitro and show increased cancer stem cell properties. These properties are transferred to their EVs that promote tumor growth.

View Article and Find Full Text PDF

Heat Shock Proteins (HSPs) and their co-chaperones have well-established roles in regulating proteostasis within the cell, the nature of which continues to emerge with further study. To date, HSPs have been shown to be integral to protein folding and re-folding, protein transport, avoidance of protein aggregation, and modulation of protein degradation. Many cell signaling events are mediated by the chemical modification of proteins post-translationally that can alter protein conformation and activity, although it is not yet known whether the changes in protein conformation induced by post-translational modifications (PTMs) are also dependent upon HSPs and their co-chaperones for subsequent protein re-folding.

View Article and Find Full Text PDF

RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription.

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90), although one of the most essential intracellular chaperones, can also play key roles in the extracellular milieu. Here, we review the properties of extracellular Hsp90 in cellular homeostasis in the heat shock response (HSR), focusing on cells of the central nervous system. Hsp90 can be secreted by microglia as well as other cell types by non-canonical pathways of secretion.

View Article and Find Full Text PDF

Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress.

View Article and Find Full Text PDF

Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (ASO; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood.

View Article and Find Full Text PDF

Unlabelled: Evidence has been accumulating to indicate that extracellular vesicles (EVs), including exosomes, released by cancer cells can foster tumour progression. The molecular chaperones - CDC37, HSP90α and HSP90β play key roles in cancer progression including epithelial-mesenchymal transition (EMT), although their contribution to EVs-mediated cell-cell communication in tumour microenvironment has not been thoroughly examined. Here we show that triple depletion of the chaperone trio attenuates numerous cancer malignancy events exerted through EV release.

View Article and Find Full Text PDF

Heat shock protein 70 (Hsp70) is an important molecular chaperone that regulates oncoprotein stability and tumorigenesis. However, attempts to develop anti-chaperone drugs targeting molecules such as Hsp70 have been hampered by toxicity issues. Hsp70 is regulated by a suite of co-chaperone molecules that bring "clients" to the primary chaperone for efficient folding.

View Article and Find Full Text PDF