Publications by authors named "Strynadka N"

Article Synopsis
  • * Researchers targeted the estrogen receptor's Activation Function 2 (AF2) site using AI to identify over a billion molecules, leading to the discovery of a promising compound, VPC-260724, which inhibits estrogen receptor activity.
  • * VPC-260724 was found to disrupt the interaction between the receptor and a coactivator, reducing cancer cell growth and gene expression in resistant breast cancer models, suggesting it may enhance existing therapies.
View Article and Find Full Text PDF

Bacteria invest significant resources into the continuous creation and tailoring of their essential protective peptidoglycan (PG) cell wall. Several soluble PG biosynthesis products in the periplasm are transported to the cytosol for recycling, leading to enhanced bacterial fitness. GlcNAc-1,6-anhydroMurNAc and peptide variants are transported by the essential major facilitator superfamily importer AmpG in Gram-negative pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally.

View Article and Find Full Text PDF

The main protease (M) remains an essential therapeutic target for COVID-19 post infection intervention given its critical role in processing the majority of viral proteins encoded by the genome of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2). Upon viral entry, the +ssRNA genome is translated into two long polyproteins (pp1a or the frameshift-dependent pp1ab) containing all the nonstructural proteins (nsps) required by the virus for immune modulation, replication, and ultimately, virion assembly. Included among these nsps is the cysteine protease M (nsp5) which self-excises from the polyprotein, dimerizes, then sequentially cleaves 11 of the 15 cut-site junctions found between each nsp within the polyprotein.

View Article and Find Full Text PDF

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used β-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S.

View Article and Find Full Text PDF

Wall teichoic acid (WTA), a covalent adduct of Gram-positive bacterial cell wall peptidoglycan, contributes directly to virulence and antibiotic resistance in pathogenic species. Polymerization of the WTA ribitol-phosphate chain is catalyzed by TarL, a member of the largely uncharacterized TagF-like family of membrane-associated enzymes. We report the cryo-electron microscopy structure of TarL, showing a tetramer that forms an extensive membrane-binding platform of monotopic helices.

View Article and Find Full Text PDF

Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage.

View Article and Find Full Text PDF

Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (). Our lead direct-acting antiviral (DAA), , is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro.

View Article and Find Full Text PDF
Article Synopsis
  • - Current vaccines target the spike protein of SARS-CoV-2, but the receptor-binding domain (RBD) is the most important part for inducing immune responses, accounting for 90% of neutralization activity.
  • - Researchers created various RBD versions and tested their effectiveness in mice, finding that a specific subdomain was crucial for strong immune responses and that certain production methods and adjuvants enhanced these responses.
  • - The Beta version of the optimized RBD-based vaccine showed broad-spectrum effectiveness against multiple COVID variants and provided complete protection in vaccinated mice, making it a promising candidate for clinical trials.
View Article and Find Full Text PDF

We tested a series of SQ109 analogues against and , in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C) diphosphate.

View Article and Find Full Text PDF

Suitably configured allyl ethers of unsaturated cyclitols act as substrates of β-glycosidases, reacting via allylic cation transition states. Incorporation of halogens at the vinylic position of these carbasugars, along with an activated leaving group, generates potent inactivators of β-glycosidases. Enzymatic turnover of these halogenated cyclitols (F, Cl, Br) displayed a counter-intuitive trend wherein the most electronegative substituents yielded the most labile pseudo-glycosidic linkages.

View Article and Find Full Text PDF
Article Synopsis
  • * The discovery of PLpro inhibitors is challenging due to the protease's flexible active site, which complicates the identification of effective drug candidates through traditional docking methods.
  • * Researchers used a virtual screening method and advanced docking techniques to find potential noncovalent PLpro inhibitors, with the compound VPC-300195 showing promising inhibitory activity against the virus, paving the way for further drug development.
View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert).

View Article and Find Full Text PDF

Broad-spectrum β-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden. In clinical strains, resistance is largely controlled by BlaR1, a receptor that senses β-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (β-lactamase PC1) and mecA (β-lactam-resistant cell-wall transpeptidase PBP2a) expression.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes COVID-19, produces polyproteins 1a and 1ab that contain, respectively, 11 or 16 non-structural proteins (nsp). Nsp5 is the main protease (M) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for viral assembly and maturation. Using C-terminally substituted M chimeras, we have determined X-ray crystallographic structures of M in complex with 10 of its 11 viral cleavage sites, bound at full occupancy intermolecularly in trans, within the active site of either the native enzyme and/or a catalytic mutant (C145A).

View Article and Find Full Text PDF

The bacterial injectisome is a structurally conserved, syringe-shaped nanomachine that spans the Gram-negative envelope and forms a continuous channel for type III secretion of protein effectors. The injectisome, and the host-modulating effectors it secretes, are essential for the pathogenesis of several Gram-negative bacterial species, and it is a key virulence factor associated with the progression of many clinical and community-based infectious diseases. The molecular structure of the injectisome has been the focus of intense research efforts over the past 30 years, and during this time significant progress has been made in determining the molecular structures of many components.

View Article and Find Full Text PDF
Article Synopsis
  • The primary and secondary coordination spheres in biological metal sites, particularly in copper proteins, significantly affect their properties.
  • A thorough bioinformatics study revealed that methionine interactions with phenylalanine, tyrosine, and tryptophan are common in the second sphere.
  • Experimental variations in azurin proteins showed that altering these second-sphere interactions led to subtle changes in copper properties, emphasizing their importance while retaining key characteristics of the azurin site.
View Article and Find Full Text PDF

Recent explosive growth of 'make-on-demand' chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chemical structures, calling for the development of automated hit-selecting protocols to minimize human intervention and error. Herein, we report the development of an artificial intelligence-driven virtual screening pipeline that utilizes Deep Docking with Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs to screen 40 billion molecules against SARS-CoV-2 main protease (Mpro).

View Article and Find Full Text PDF

All viruses must usurp host ribosomes for viral protein synthesis. Dicistroviruses utilize an intergenic region internal ribosome entry site (IGR IRES) to directly recruit ribosomes and mediate translation initiation from a non-AUG start codon. The IGR IRES adopts a three-pseudoknot structure that comprises a ribosome binding domain of pseudoknot II and III (PKII and PKIII), and a tRNA-like anticodon domain (PKI) connected via a short, one to three nucleotide hinge region.

View Article and Find Full Text PDF

Propionibacterium acnes, though generally considered part of the normal flora of human skin, is an opportunistic pathogen associated with acne vulgaris as well as other diseases, including endocarditis, endophthalmitis and prosthetic joint infections. Its virulence potential is also supported by knowledge gained from its sequenced genome. Indeed, a vaccine targeting a putative cell wall-anchored P.

View Article and Find Full Text PDF

The polyprenyl lipid undecaprenyl phosphate (CP) is the universal carrier lipid for the biosynthesis of bacterial cell wall polymers. CP is synthesized in its pyrophosphate form by undecaprenyl pyrophosphate synthase (UppS), an essential -prenyltransferase that is an attractive target for antibiotic development. We previously identified a compound (MAC-0547630) that showed promise as a novel class of inhibitor and an ability to potentiate β-lactam antibiotics.

View Article and Find Full Text PDF

Background: PBP4, a low-molecular-weight PBP in Staphylococcus aureus, is not considered to be a classical mediator of β-lactam resistance. Previous studies carried out by our group with laboratory strains of S. aureus demonstrated the ability of PBP4 to produce β-lactam resistance through mutations associated with the pbp4 promoter and/or gene.

View Article and Find Full Text PDF

The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of β-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic.

View Article and Find Full Text PDF

The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products.

View Article and Find Full Text PDF

The rise of antibiotic resistance calls for new therapeutics targeting resistance factors such as the New Delhi metallo-β-lactamase 1 (NDM-1), a bacterial enzyme that degrades β-lactam antibiotics. We present structure-guided computational methods for designing peptide macrocycles built from mixtures of l- and d-amino acids that are able to bind to and inhibit targets of therapeutic interest. Our methods explicitly consider the propensity of a peptide to favor a binding-competent conformation, which we found to predict rank order of experimentally observed IC values across seven designed NDM-1- inhibiting peptides.

View Article and Find Full Text PDF