A challenge in sensory neuroscience is understanding how populations of neurons operate in concert to represent diverse stimuli. To meet this challenge, we have created "encoding manifolds" that reveal the overall responses of brain areas to diverse stimuli with the resolution of individual neurons and their response dynamics. Here we use encoding manifold to compare the population-level encoding of primary visual cortex (VISp) with five higher visual areas (VISam, VISal, VISpm, VISlm, and VISrl).
View Article and Find Full Text PDFDevelopmental myelination is a protracted process in the mammalian brain. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity.
View Article and Find Full Text PDFWhen adult mice are repeatedly exposed to a particular visual stimulus for as little as 1 h per day for several days while their visual cortex (V1) is in the high-gain state produced by locomotion, that specific stimulus elicits much stronger responses in V1 neurons for the following several weeks, even when measured in anesthetized animals. Such stimulus-specific enhancement (SSE) is not seen if locomotion is prevented. The effect of locomotion on cortical responses is mediated by vasoactive intestinal peptide (VIP) positive interneurons, which can release both the peptide and the inhibitory neurotransmitter GABA.
View Article and Find Full Text PDFCortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
The retina and primary visual cortex (V1) both exhibit diverse neural populations sensitive to diverse visual features. Yet it remains unclear how neural populations in each area partition stimulus space to span these features. One possibility is that neural populations are organized into discrete groups of neurons, with each group signaling a particular constellation of features.
View Article and Find Full Text PDFCurrent hypotheses on the mechanisms underlying the development and plasticity of the ocular dominance system through competitive interactions between pathways serving the two eyes strongly suggest the involvement of neurotrophins and their high affinity receptors. In the cat, infusion of the tyrosine kinase B ligand (trkB), neurotrophin-4/5 (NT-4/5), abolishes ocular dominance plasticity that follows monocular deprivation (Gillespie et al., 2000), while tyrosine kinase A and C ligands (trkA and trkC) do not have this effect.
View Article and Find Full Text PDFElectrical stimulation is an effective tool for mapping and altering brain connectivity, with applications ranging from treating pharmacology-resistant neurological disorders to providing sensory feedback for neural prostheses. Paramount to the success of these applications is the ability to manipulate electrical currents to precisely control evoked neural activity patterns. However, little is known about stimulation-evoked responses in inhibitory neurons nor how stimulation-evoked activity patterns depend on ongoing neural activity.
View Article and Find Full Text PDFBackground: Developmental myelination is a protracted process in the mammalian brain. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age. We tested this hypothesis in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity.
View Article and Find Full Text PDFThe retina and primary visual cortex (V1) both exhibit diverse neural populations sensitive to diverse visual features. Yet it remains unclear how neural populations in each area partition stimulus space to span these features. One possibility is that neural populations are organized into discrete groups of neurons, with each group signaling a particular constellation of features.
View Article and Find Full Text PDFCortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Previously, we showed that loss of clustered gamma protocadherins (), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Traumatic brain injury (TBI) is a leading cause of long-term neurological disability in the world and the strongest environmental risk factor for the development of dementia. Even mild TBI (resulting from concussive injuries) is associated with a greater than twofold increase in the risk of dementia onset. Little is known about the cellular mechanisms responsible for the progression of long-lasting cognitive deficits.
View Article and Find Full Text PDFVisual perception in natural environments depends on the ability to focus on salient stimuli while ignoring distractions. This kind of selective visual attention is associated with gamma activity in the visual cortex. While the nucleus reticularis thalami (nRT) has been implicated in selective attention, its role in modulating gamma activity in the visual cortex remains unknown.
View Article and Find Full Text PDFCortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Here, we show that loss of clustered gamma protocadherins (), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice.
View Article and Find Full Text PDFThe developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure.
View Article and Find Full Text PDFTransplantation of even a small number of embryonic inhibitory neurons from the medial ganglionic eminence (MGE) into postnatal visual cortex makes it lose responsiveness to an eye deprived of vision when the transplanted neurons reach the age of the normal critical period of activity-dependent ocular dominance (OD) plasticity. The transplant might induce OD plasticity in the host circuitry or might instead construct a parallel circuit of its own to suppress cortical responses to the deprived eye. We transplanted MGE neurons expressing either archaerhodopsin or channelrhodopsin into the visual cortex of both male and female mice, closed one eyelid for 4-5 d, and, as expected, observed transplant-induced OD plasticity.
View Article and Find Full Text PDFInt IEEE EMBS Conf Neural Eng
March 2019
Electrical stimulation is a highly-effective, temporally-precise technique to evoke neural activity in the brain, and thus is critically important for both research and clinical applications. Here, we set out to understand the time-course and spatial spread of neural activation elicited by electrical stimulation. By imaging the cortex of awake, chronically-implanted, transgenic mice during electrical stimulation, we found that a broad range of stimulation parameters led to widespread neural activation.
View Article and Find Full Text PDFThe maturation of GABAergic inhibitory circuits is necessary for the onset of the critical period for ocular dominance plasticity (ODP) in the postnatal visual cortex (Hensch, 2005; Espinosa and Stryker, 2012). When it is deficient, the critical period does not start. When inhibitory maturation or signaling is precocious, it induces a precocious critical period.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
Assessments of the mouse visual system based on spatial-frequency analysis imply that its visual capacity is low, with few neurons responding to spatial frequencies greater than 0.5 cycles per degree. However, visually mediated behaviors, such as prey capture, suggest that the mouse visual system is more precise.
View Article and Find Full Text PDFEmerging technologies are now giving us unprecedented access to manipulate brain circuits, shedding new light on treatments for amblyopia. This research is identifying key circuit elements that control brain plasticity and highlight potential therapeutic targets to promote rewiring in the visual system during and beyond early life. Here, we explore how such recent advancements may guide future pharmacological, genetic, and behavioral approaches to treat amblyopia.
View Article and Find Full Text PDFBackground: Proper instruction during medical training regarding performing adequate physical examinations prior to urologic consultations greatly improves patient care. We evaluated the frequency of genitourinary (GU) physical examinations performed prior to urologic consultation to determine the influence of factors affecting the completion of these examinations.
Methods: Between January 2013 and December 2014, 1,596 consultations were requested by primary providers and completed by the urology department at a major tertiary care teaching institution.
Aim: This is a pre-post observational study from an endocrinology ambulatory care practice which assessed the effectiveness and safety following the addition of a glucagon-like peptide-1 (GLP-1) agonist, weekly exenatide (Bydureon), to basal insulin therapy in patients with type 2 diabetes mellitus (T2DM). Liraglutide plus basal insulin served as a comparison group.
Materials And Methods: A data collection form was utilized to collect study-related information.
Interneuron precursors transplanted into visual cortex induce network plasticity during their heterochronic maturation. Such plasticity can have a significant impact on the function of the animal and is normally present only during a brief critical period in early postnatal development. Elucidating the synaptic and physiological properties of interneuron precursors as they mature is key to understanding how long-term circuit changes are induced by transplants.
View Article and Find Full Text PDF