Publications by authors named "Stryder Meadows"

Increased endothelial cell proliferation is a hallmark of arteriovenous malformations (AVMs) in hereditary hemorrhagic telangiectasia (HHT). Here, we report a cyclin-dependent kinase 6 (CDK6)-driven mechanism of cell cycle deregulation involved in endothelial cell proliferation and HHT pathology. Specifically, endothelial cells from the livers of HHT mice bypassed the G1/S checkpoint and progressed through the cell cycle at an accelerated pace.

View Article and Find Full Text PDF

De novo mutations in transcriptional regulators are emerging as key risk factors contributing to the etiology of neurodevelopmental disorders. Human genetic studies have recently identified ZMIZ1 and its de novo mutations as causal of a neurodevelopmental syndrome strongly associated with intellectual disability, autism, ADHD, microcephaly, and other developmental anomalies. However, the role of ZMIZ in brain development or how ZMIZ1 mutations cause neurological phenotypes is unknown.

View Article and Find Full Text PDF

Angiogenesis is a highly coordinated process involving the control of various endothelial cell behaviors. Mechanisms for transcription factor involvement in the regulation of endothelial cell dynamics and angiogenesis have become better understood, however much remains unknown, especially the role of non-DNA binding transcriptional cofactors. Here, we show that Zmiz1, a transcription cofactor, is enriched in the endothelium and critical for embryonic vascular development, postnatal retinal angiogenesis, and pathological angiogenesis in oxygen induced retinopathy (OIR).

View Article and Find Full Text PDF

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown.

View Article and Find Full Text PDF

Neurodevelopmental disorders (NDDs) are a class of pathologies arising from perturbations in brain circuit formation and maturation with complex etiological triggers often classified as environmental and genetic. Neuropsychiatric conditions such as autism spectrum disorders (ASD), intellectual disability (ID), and attention deficit hyperactivity disorders (ADHD) are common NDDs characterized by their hereditary underpinnings and inherent heterogeneity. Genetic risk factors for NDDs are increasingly being identified in non-coding regions and proteins bound to them, including transcriptional regulators and chromatin remodelers.

View Article and Find Full Text PDF

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000.

View Article and Find Full Text PDF

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown.

View Article and Find Full Text PDF

Proper vascular formation is regulated by multiple signaling pathways. The vascular endothelial growth factor (VEGF) signaling promotes endothelial proliferation. Notch and its downstream targets act to lead endothelial cells toward an arterial fate through regulation of arterial gene expression.

View Article and Find Full Text PDF

Background: Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by arteriovenous malformations and blood vessel enlargements. However, there are no effective drug therapies to combat arteriovenous malformation formation in patients with HHT. Here, we aimed to address whether elevated levels of ANG2 (angiopoietin-2) in the endothelium is a conserved feature in mouse models of the 3 major forms of HHT that could be neutralized to treat brain arteriovenous malformations and associated vascular defects.

View Article and Find Full Text PDF

The (Pro)renin receptor ([P]RR), also known as ATP6AP2, is a single-transmembrane protein that is implicated in a multitude of biological processes. However, the exact role of ATP6AP2 during blood vessel development remains largely undefined. Here, we use an inducible endothelial cell-specific (EC-specific) Atp6ap2-KO mouse model to investigate the role of ATP6AP2 during both physiological and pathological angiogenesis in vivo.

View Article and Find Full Text PDF

Objective: Despite the absolute requirement of Delta/Notch signaling to activate lateral inhibition during early blood vessel development, many mechanisms remain unclear about how this system is regulated. Our objective was to determine the involvement of Epsin 15 Homology Domain Containing 2 (EHD2) in delta-like ligand 4 (Dll4) endocytosis during Notch activation.

Approach And Results: Using both in vivo and in vitro models, we demonstrate that EHD2 is a novel modulator of Notch activation in endothelial cells through controlling endocytosis of Dll4.

View Article and Find Full Text PDF

Background: Annexin A3 (Anxa3) is a member of the calcium-regulated, cell membrane-binding family of annexin proteins. We previously confirmed that Anxa3 is expressed in the endothelial lineage in vertebrates and that loss of anxa3 in Xenopus laevis leads to embryonic blood vessel defects. However, the biological function of Anxa3 in mammals is completely unknown.

View Article and Find Full Text PDF

Background: Hereditary hemorrhagic telangiectasia is an autosomal dominant vascular disorder caused by heterozygous, loss-of-function mutations in 4 transforming growth factor beta (TGFβ) pathway members, including the central transcriptional mediator of the TGFβ pathway, Smad4. Loss of Smad4 causes the formation of inappropriate, fragile connections between arteries and veins called arteriovenous malformations (AVMs), which can hemorrhage leading to stroke, aneurysm, or death. Unfortunately, the molecular mechanisms underlying AVM pathogenesis remain poorly understood, and the TGFβ downstream effectors responsible for hereditary hemorrhagic telangiectasia-associated AVM formation are currently unknown.

View Article and Find Full Text PDF

Background: The development of models that incorporate intact microvascular networks enables the investigation of multicellular dynamics during angiogenesis. Our laboratory introduced the rat mesentery culture model as such a tool, which would be enhanced with mouse tissue. Since mouse mesentery is avascular, an alternative is mouse mesometrium, the connective tissue of uterine horns.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by abnormal connections between arteries and veins due to specific mutations in the TGFβ signaling pathway.
  • Researchers created a new mouse model with a targeted knockout of the Smad4 gene in endothelial cells to investigate the development of arteriovenous malformations (AVMs), which are common in HHT.
  • The study results showed that loss of Smad4 leads to vascular defects, increased cell proliferation, changes in blood vessel coverage, and links between TGFβ and VEGF signaling pathways, contributing to AVM formation.
View Article and Find Full Text PDF

Helicobacter pylori infection triggers a cascade of inflammatory stages that may lead to the appearance of non-atrophic gastritis, multifocal atrophic, intestinal metaplasia, dysplasia, and cancer. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by binding to pathogens. Initial studies showed its deletion and loss of expression in a variety of tumors but the role of this gene in tumor development is not completely understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how BMP signaling affects the formation of new blood vessels (angiogenesis) in the early postnatal stage, specifically in mouse retinal vessels.
  • High levels of proangiogenic BMP ligands and receptors were found in the retinas, and removing the BMP type 2 receptor significantly reduced the growth of new blood vessels.
  • The findings suggest that specific BMP type 1 receptors (ALK2/ACVR1 and ALK3/BMPR1A) work together with BMP type 2 receptors to promote angiogenesis, highlighting their importance in retinal development.
View Article and Find Full Text PDF
Article Synopsis
  • The murine retina serves as an effective model for studying blood vessel formation, specifically focusing on the differentiation and remodeling of arteries and veins.
  • Researchers utilized techniques like in situ hybridization and immunofluorescent staining to investigate arteriovenous (AV) markers and how they develop in neonatal mice.
  • Findings reveal that while the differentiation of arteries and veins begins around postnatal day 3, a clear molecular separation of vessel types is established by postnatal day 7, indicating a gradual process of AV identity acquisition during retinal development.
View Article and Find Full Text PDF

Wnt signaling is essential to many events during organogenesis, including the development of the mammalian lung. The Wnt family member Wnt4 has been shown to be required for the development of kidney, gonads, thymus, mammary and pituitary glands. Here, we show that Wnt4 is critical for proper morphogenesis and growth of the respiratory system.

View Article and Find Full Text PDF

The Rho family of small GTPases has been shown to be required in endothelial cells (ECs) during blood vessel formation. However, the underlying cellular events controlled by different GTPases remain unclear. Here, we assess the cellular mechanisms by which Cdc42 regulates mammalian vascular morphogenesis and maintenance.

View Article and Find Full Text PDF

Annexins are a large family of calcium binding proteins that associate with cell membrane phospholipids and are involved in various cellular processes including endocytosis, exocytosis and membrane-cytoskeletal organization. Despite studies on numerous Annexin proteins, the function of Annexin A3 (Anxa3) is largely unknown. Our studies identify Anxa3 as a unique marker of the endothelial and myeloid cell lineages of Xenopus laevis during development.

View Article and Find Full Text PDF

The vascular system is a complex, largely stereotyped network of interconnecting and branching vessels. How thousands of vessels form at precise locations is a key question regarding vascular morphogenesis. In order to achieve this defined architecture, the embryo integrates a multitude of attractive and repulsive cues to guide and shape the developing vasculature.

View Article and Find Full Text PDF

Rationale: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown.

Objective: Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development.

View Article and Find Full Text PDF

Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed by lymphatic endothelial cells and has been shown to stimulate lymphangiogenesis in adult mice. However, the role VEGFR2 serves in the development of the lymphatic vascular system has not been defined. Here we use the Cre-lox system to show that the proper development of the lymphatic vasculature requires VEGFR2 expression by lymphatic endothelium.

View Article and Find Full Text PDF

Background: Neuronal guidance cues influence endothelial cell (EC) behavior to shape the embryonic vascular system. The repulsive neuronal guidance cue, Semaphorin 3E (Sema3E), is critical for creating avascular zones that instruct and subsequently pattern the first embryonic vessels, the paired dorsal aortae (DA). Sema3E(-) (/) (-) embryos develop highly branched plexus-like vessels during vasculogenesis, instead of smooth paired vessels.

View Article and Find Full Text PDF