Notch proteins are single pass transmembrane receptors activated by sequential extracellular and intramembrane cleavages that release their cytosolic domains to function as transcription factors in the nucleus. Upon binding, Delta/Serrate/LAG-2 (DSL) ligands activate Notch by exerting a "pulling" force across the intercellular ligand/receptor bridge. This pulling force is generated by Epsin-mediated endocytosis of ligand into the signal-sending cell, and results in the extracellular cleavage of the force-sensing Negative Regulatory Region (NRR) of the receptor by an ADAM10 protease [Kuzbanian (Kuz) in ].
View Article and Find Full Text PDFThe conserved transmembrane receptor Notch has diverse and profound roles in controlling cell fate during animal development. In the absence of ligand, a negative regulatory region (NRR) in the Notch ectodomain adopts an autoinhibited confirmation, masking an ADAM protease cleavage site; ligand binding induces cleavage of the NRR, leading to Notch ectodomain shedding as the first step of signal transduction. In Drosophila and vertebrates, recruitment of transmembrane Delta/Serrate/LAG-2 (DSL) ligands by the endocytic adaptor Epsin, and their subsequent internalization by Clathrin-mediated endocytosis, exerts a "pulling force" on Notch that is essential to expose the cleavage site in the NRR.
View Article and Find Full Text PDFDevelopment of the Drosophila wing-a paradigm of organ development-is governed by 2 morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Both proteins are produced by defined subpopulations of cells and spread outwards, forming gradients that control gene expression and cell pattern as a function of concentration. They also control growth, but how is unknown.
View Article and Find Full Text PDFThe stereotyped dimensions of animal bodies and their component parts result from tight constraints on growth. Yet, the mechanisms that stop growth when organs reach the right size are unknown. Growth of the wing-a classic paradigm-is governed by two morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt).
View Article and Find Full Text PDFDSL ligands activate Notch by inducing proteolytic cleavage of the receptor ectodomain, an event that requires ligand to be endocytosed in signal-sending cells by the adaptor protein Epsin. Two classes of explanation for this unusual requirement are (1) recycling models, in which the ligand must be endocytosed to be modified or repositioned before it binds Notch and (2) pulling models, in which the ligand must be endocytosed after it binds Notch to exert force that exposes an otherwise buried site for cleavage. We demonstrate in vivo that ligands that cannot enter the Epsin pathway nevertheless bind Notch but fail to activate the receptor because they cannot exert sufficient force.
View Article and Find Full Text PDFMany eukaryotic cells can respond to transient environmental or developmental stimuli with heritable changes in gene expression that are associated with nucleosome modifications. However, it remains uncertain whether modified nucleosomes play a causal role in transmitting such epigenetic memories, as opposed to controlling or merely reflecting transcriptional states inherited by other means. Here, we provide in vivo evidence that H3K27 trimethylated nucleosomes, once established at a repressed HOX gene, remain heritably associated with that gene and can carry the memory of the silenced state through multiple rounds of replication, even when the capacity to copy the H3K27me3 mark to newly incorporated nucleosomes is diminished or abolished.
View Article and Find Full Text PDFNuclear Dbf2-related (NDR) kinases play a central role in limiting growth in most animals. Signals that promote growth do so in part by suppressing the activation of NDR kinases by STE20/Hippo kinases. Here, we identify another mechanism for downregulating NDR kinase activity.
View Article and Find Full Text PDFOrgan growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.
View Article and Find Full Text PDFOlfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure.
View Article and Find Full Text PDFMany epithelia have a common planar cell polarity (PCP), as exemplified by the consistent orientation of hairs on mammalian skin and insect cuticle. One conserved system of PCP depends on Starry night (Stan, also called Flamingo), an atypical cadherin that forms homodimeric bridges between adjacent cells. Stan acts together with other transmembrane proteins, most notably Frizzled (Fz) and Van Gogh (Vang, also called Strabismus).
View Article and Find Full Text PDFReceptor tyrosine kinases (RTKs) and Notch (N) proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev) and the EGF receptor (DER) to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to particular fates.
View Article and Find Full Text PDFDelta/Serrate/Lag2 (DSL) ligands and their Notch family receptors have profound and pervasive roles in development. They are also expressed in adult tissues, notably in mature neurons and glia in the brain, where their roles are unknown. Here, focusing on the sense of smell in adult Drosophila, we show that Notch is activated in select olfactory receptor neurons (ORNs) in an odorant-specific fashion.
View Article and Find Full Text PDFDuring development, the Drosophila wing primordium undergoes a dramatic increase in cell number and mass under the control of the long-range morphogens Wingless (Wg, a Wnt) and Decapentaplegic (Dpp, a BMP). This process depends in part on the capacity of wing cells to recruit neighboring, non-wing cells into the wing primordium. Wing cells are defined by activity of the selector gene vestigial (vg) and recruitment entails the production of a vg-dependent "feed-forward signal" that acts together with morphogen to induce vg expression in neighboring non-wing cells.
View Article and Find Full Text PDFMost, perhaps all cells in epithelial sheets are polarized in the plane of the sheet. This type of polarity, referred to as planar cell polarity (PCP), can be expressed in the orientation of cilia and stereocilia, in oriented outgrowths such as hairs, in the plane of cell division, in directed cell movement and possibly in the orientation of axon extension. Another popular area in current research is growth: there is an attempt to find systems that fix the shape and size of organs.
View Article and Find Full Text PDFThe mechanisms of planar cell polarity are being revealed by genetic analysis. Recent studies have provided new insights into interactions between three proteins involved in planar cell polarity: Flamingo, Frizzled and Van Gogh.
View Article and Find Full Text PDFThe Drosophila wing primordium is defined by expression of the selector gene vestigial (vg) in a discrete subpopulation of cells within the wing imaginal disc. Following the early segregation of the disc into dorsal (D) and ventral (V) compartments, vg expression is governed by signals generated along the boundary between the two compartments. Short-range DSL (Delta/Serrate/LAG-2)-Notch signaling between D and V cells drives vg expression in ;border' cells that flank the boundary.
View Article and Find Full Text PDFFollowing segregation of the Drosophila wing imaginal disc into dorsal (D) and ventral (V) compartments, the wing primordium is specified by activity of the selector gene vestigial (vg). In the accompanying paper, we present evidence that vg expression is itself driven by three distinct inputs: (1) short-range DSL (Delta/Serrate/LAG-2)-Notch signaling across the D-V compartment boundary; (2) long-range Wg signaling from cells abutting the D-V compartment boundary; and (3) a short-range signal sent by vg-expressing cells that entrains neighboring cells to upregulate vg in response to Wg. Furthermore, we showed that these inputs define a feed-forward mechanism of vg autoregulation that initiates in D-V border cells and propagates from cell to cell by reiterative cycles of vg upregulation.
View Article and Find Full Text PDFIn multicellular organisms, cells are polarized in the plane of the epithelial sheet, revealed in some cell types by oriented hairs or cilia. Many of the underlying genes have been identified in Drosophila melanogaster and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP).
View Article and Find Full Text PDFPlanar polarity is a fundamental property of epithelia in animals and plants. In Drosophila it depends on at least two sets of genes: one set, the Ds system, encodes the cadherins Dachsous (Ds) and Fat (Ft), as well as the Golgi protein Four-jointed. The other set, the Stan system, encodes Starry night (Stan or Flamingo) and Frizzled.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2005
In Drosophila, stresses such as x-irradiation or severe heat shock can cause most epidermal cells to die by apoptosis. Yet, the remaining cells recover from such assaults and form normal adult structures, indicating that they undergo extra growth to replace the lost cells. Recent studies of cells in which the cell death pathway is blocked by expression of the caspase inhibitor P35 have raised the possibility that dying cells normally regulate this compensatory growth by serving as transient sources of mitogenic signals.
View Article and Find Full Text PDFLigands of the Delta/Serrate/Lag2 (DSL) family must normally be endocytosed in signal-sending cells to activate Notch in signal-receiving cells. DSL internalization and signaling are promoted in zebrafish and Drosophila, respectively, by the ubiquitin ligases Mind bomb (Mib) and Neuralized (Neur). DSL signaling activity also depends on Epsin, a conserved endocytic adaptor thought to target mono-ubiquitinated membrane proteins for internalization.
View Article and Find Full Text PDFMembers of the Frizzled family of serpentine transmembrane receptors are required to transduce Wingless/Int (Wnt) signals and contain in their N-terminal regions a conserved Wnt-binding cysteine-rich domain (CRD). Each CRD has specific affinities for particular Wnts, and it is generally believed that signal transduction depends on the strength of this interaction. Here, we report in vivo evidence that the CRD is dispensable for Frizzled family receptors to transduce Wingless (Wg), the primary Wnt signal in Drosophila.
View Article and Find Full Text PDFRecent findings suggest that Delta/Serrate/Lag2 (DSL) signals activate Notch by an unprecedented mechanism that requires the ligands to be endocytosed in signal-sending cells to activate the receptor in signal-receiving cells. Here, we show that cells devoid of Epsin, a conserved adaptor protein for Clathrin-mediated endocytosis, behave normally except that they cannot send DSL signals. Surprisingly, we find that Epsin is not required for bulk endocytosis of DSL proteins.
View Article and Find Full Text PDF