Aims: Current deep learning algorithms for automatic ECG analysis have shown notable accuracy but are typically narrowly focused on singular diagnostic conditions. This exploratory study aims to investigate the capability of a single deep learning model to predict a diverse range of both cardiac and non-cardiac discharge diagnoses based on a single ECG collected in the emergency department.
Methods And Results: In this study, we assess the performance of a model trained to predict a broad spectrum of diagnoses.
Deep neural networks have become increasingly popular for analyzing ECG data because of their ability to accurately identify cardiac conditions and hidden clinical factors. However, the lack of transparency due to the black box nature of these models is a common concern. To address this issue, explainable AI (XAI) methods can be employed.
View Article and Find Full Text PDFCardiovascular diseases remain the leading global cause of mortality. Age is an important covariate whose effect is most easily investigated in a healthy cohort to properly distinguish the former from disease-related changes. Traditionally, most of such insights have been drawn from the analysis of electrocardiogram (ECG) feature changes in individuals as they age.
View Article and Find Full Text PDFAuscultation is a fundamental diagnostic technique that provides valuable diagnostic information about different parts of the body. With the increasing prevalence of digital stethoscopes and telehealth applications, there is a growing trend towards digitizing the capture of bodily sounds, thereby enabling subsequent analysis using machine learning algorithms. This study introduces the SonicGuard sensor, which is a multichannel acoustic sensor designed for long-term recordings of bodily sounds.
View Article and Find Full Text PDFHerzschrittmacherther Elektrophysiol
June 2024
The use of artificial intelligence (AI) in healthcare has made significant progress in the last 10 years. Many experts believe that utilization of AI technologies, especially deep learning, will bring about drastic changes in how physicians understand, diagnose, and treat diseases. One aspect of this development is AI-enhanced electrocardiography (ECG) analysis.
View Article and Find Full Text PDFMotivation: We explored how explainable artificial intelligence (XAI) can help to shed light into the inner workings of neural networks for protein function prediction, by extending the widely used XAI method of integrated gradients such that latent representations inside of transformer models, which were finetuned to Gene Ontology term and Enzyme Commission number prediction, can be inspected too.
Results: The approach enabled us to identify amino acids in the sequences that the transformers pay particular attention to, and to show that these relevant sequence parts reflect expectations from biology and chemistry, both in the embedding layer and inside of the model, where we identified transformer heads with a statistically significant correspondence of attribution maps with ground truth sequence annotations (e.g.
IEEE J Biomed Health Inform
January 2024
Feature importance methods promise to provide a ranking of features according to importance for a given classification task. A wide range of methods exist but their rankings often disagree and they are inherently difficult to evaluate due to a lack of ground truth beyond synthetic datasets. In this work, we put feature importance methods to the test on real-world data in the domain of cardiology, where we try to distinguish three specific pathologies from healthy subjects based on ECG features comparing to features used in cardiologists' decision rules as ground truth.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2023
Deep learning has emerged as the preferred modeling approach for automatic ECG analysis. In this study, we investigate three elements aimed at improving the quantitative accuracy of such systems. These components consistently enhance performance beyond the existing state-of-the-art, which is predominantly based on convolutional models.
View Article and Find Full Text PDFHerzschrittmacherther Elektrophysiol
September 2023
ChatGPT, a chatbot based on a large language model, is currently attracting much attention. Modern machine learning (ML) architectures enable the program to answer almost any question, to summarize, translate, and even generate its own texts, all in a text-based dialogue with the user. Underlying technologies, summarized under the acronym NLP (natural language processing), go back to the 1960s.
View Article and Find Full Text PDFComput Biol Med
September 2023
Generating synthetic data is a promising solution for addressing privacy concerns that arise when distributing sensitive health data. In recent years, diffusion models have become the new standard for generating various types of data, while structured state space models have emerged as a powerful approach for capturing long-term dependencies in time series. Our proposed solution, SSSD-ECG, combines these two technologies to generate synthetic 12-lead electrocardiograms (ECGs) based on over 70 ECG statements.
View Article and Find Full Text PDFWhile machine learning is currently transforming the field of histopathology, the domain lacks a comprehensive evaluation of state-of-the-art models based on essential but complementary quality requirements beyond a mere classification accuracy. In order to fill this gap, we developed a new methodology to extensively evaluate a wide range of classification models, including recent vision transformers, and convolutional neural networks such as: ConvNeXt, ResNet (BiT), Inception, ViT and Swin transformer, with and without supervised or self-supervised pretraining. We thoroughly tested the models on five widely used histopathology datasets containing whole slide images of breast, gastric, and colorectal cancer and developed a novel approach using an image-to-image translation model to assess the robustness of a cancer classification model against stain variations.
View Article and Find Full Text PDFMachine learning (ML) methods for the analysis of electrocardiography (ECG) data are gaining importance, substantially supported by the release of large public datasets. However, these current datasets miss important derived descriptors such as ECG features that have been devised in the past hundred years and still form the basis of most automatic ECG analysis algorithms and are critical for cardiologists' decision processes. ECG features are available from sophisticated commercial software but are not accessible to the general public.
View Article and Find Full Text PDFHistological sections of the lymphatic system are usually the basis of static (2D) morphological investigations. Here, we performed a dynamic (4D) analysis of human reactive lymphoid tissue using confocal fluorescent laser microscopy in combination with machine learning. Based on tracks for T-cells (CD3), B-cells (CD20), follicular T-helper cells (PD1) and optical flow of follicular dendritic cells (CD35), we put forward the first quantitative analysis of movement-related and morphological parameters within human lymphoid tissue.
View Article and Find Full Text PDFThere is an increasing number of medical use cases where classification algorithms based on deep neural networks reach performance levels that are competitive with human medical experts. To alleviate the challenges of small dataset sizes, these systems often rely on pretraining. In this work, we aim to assess the broader implications of these approaches in order to better understand what type of pretraining works reliably (with respect to performance, robustness, learned representation etc.
View Article and Find Full Text PDFHerzschrittmacherther Elektrophysiol
September 2022
Herzschrittmacherther Elektrophysiol
September 2022
Herzschrittmacherther Elektrophysiol
June 2022
Clinical 12-lead electrocardiography (ECG) is one of the most widely encountered kinds of biosignals. Despite the increased availability of public ECG datasets, label scarcity remains a central challenge in the field. Self-supervised learning represents a promising way to alleviate this issue.
View Article and Find Full Text PDFGenerative neural samplers offer a complementary approach to Monte Carlo methods for problems in statistical physics and quantum field theory. This paper tests the ability of generative neural samplers to estimate observables for real-world low-dimensional spin systems. It maps out how autoregressive models can sample configurations of a quantum Heisenberg chain via a classical approximation based on the Suzuki-Trotter transformation.
View Article and Find Full Text PDFElectrical impedance tomography (EIT) is a noninvasive imaging modality that allows a continuous assessment of changes in regional bioimpedance of different organs. One of its most common biomedical applications is monitoring regional ventilation distribution in critically ill patients treated in intensive care units. In this work, we put forward a proof-of-principle study that demonstrates how one can reconstruct synchronously measured respiratory or circulatory parameters from the EIT image sequence using a deep learning model trained in an end-to-end fashion.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
May 2021
Electrocardiography (ECG) is a very common, non-invasive diagnostic procedure and its interpretation is increasingly supported by algorithms. The progress in the field of automatic ECG analysis has up to now been hampered by a lack of appropriate datasets for training as well as a lack of well-defined evaluation procedures to ensure comparability of different algorithms. To alleviate these issues, we put forward first benchmarking results for the recently published, freely accessible clinical 12-lead ECG dataset PTB-XL, covering a variety of tasks from different ECG statement prediction tasks to age and sex prediction.
View Article and Find Full Text PDFBackground: Immunotherapy is a promising route towards personalized cancer treatment. A key algorithmic challenge in this process is to decide if a given peptide (neoepitope) binds with the major histocompatibility complex (MHC). This is an active area of research and there are many MHC binding prediction algorithms that can predict the MHC binding affinity for a given peptide to a high degree of accuracy.
View Article and Find Full Text PDFElectrocardiography (ECG) is a key non-invasive diagnostic tool for cardiovascular diseases which is increasingly supported by algorithms based on machine learning. Major obstacles for the development of automatic ECG interpretation algorithms are both the lack of public datasets and well-defined benchmarking procedures to allow comparison s of different algorithms. To address these issues, we put forward PTB-XL, the to-date largest freely accessible clinical 12-lead ECG-waveform dataset comprising 21837 records from 18885 patients of 10 seconds length.
View Article and Find Full Text PDF