The mechanisms underlying the efficacy of anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) therapy are incompletely understood. Here, by immune profiling responding PD-1CD8 T (T) cell populations from patients with advanced melanoma, we identified differential programming of T cells in response to combination therapy, from an exhausted toward a more cytotoxic effector program. This effect does not occur with anti-PD-1 monotherapy.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2023
Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp.
View Article and Find Full Text PDFWe reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models.
View Article and Find Full Text PDFHerein we describe the use of the vaccinia virus strain GLV-1h68 as a theragnostic agent in cancer models. To date, GLV-1h68 has been used successfully in more than 50 xenograft tumor models. The recombinant vaccinia virus strain has been equipped with heterologous expression cassettes for a luciferase-fluorescent protein fusion gene, bacterial beta-galactosidase, as well as a bacterial glucuronidase.
View Article and Find Full Text PDFUnlabelled: Exogenous gene induction of therapeutic, diagnostic, and safety mechanisms could be a considerable improvement in oncolytic virotherapy. Here, we introduced a doxycycline-inducible promoter system (comprised of a tetracycline repressor, several promoter constructs, and a tet operator sequence) into oncolytic recombinant vaccinia viruses (rVACV), which were further characterized in detail. Experiments in cell cultures as well as in tumor-bearing mice were analyzed to determine the role of the inducible-system components.
View Article and Find Full Text PDFMore than 90% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells.
View Article and Find Full Text PDFThe α(v)β₃ integrin is highly expressed in prostate cancer (PCa), in which it is a key player in tumour invasion, angiogenesis and metastasis formation. Therefore, α(v)β₃ integrin is considered a very promising target for molecular imaging of PCa. This study tested the potential of the novel α(v)β₃ integrin affine agent [⁶⁸Ga]NOTA-RGD in comparison with the established [¹⁸F]fluoroethylcholine (FEC) and [¹⁸F]fluorodeoxyglucose (FDG) for assessing PCa using positron emission tomography (PET).
View Article and Find Full Text PDFAn enzymatically activatable prodrug of doxorubicin was covalently coupled, using click-chemistry, to the hydrophobic core of poly(ethylene glycol)--poly[N-(2-hydroxypropyl)-methacrylamide-lactate] micelles. The release and cytotoxic activity of the prodrug was evaluated in A549 non-small-cell lung cancer cells after adding β-glucuronidase, an enzyme which is present intracellularly in lysosomes and extracellularly in necrotic areas of tumor lesions. The prodrug-containing micelles alone and in combination with standard and β-glucuronidase-producing oncolytic vaccinia viruses were also evaluated in mice bearing A549 xenograft tumors.
View Article and Find Full Text PDFOncolytic viruses are currently in clinical trials for a variety of tumors, including high grade gliomas. A characteristic feature of high grade gliomas is their high vascularity and treatment approaches targeting tumor endothelium are under investigation, including bevacizumab. The aim of this study was to improve oncolytic viral therapy by combining it with ionizing radiation and to radiosensitize tumor vasculature through a viral encoded anti-angiogenic payload.
View Article and Find Full Text PDFBackground: Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers.
Methods: Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models.
We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate.
View Article and Find Full Text PDFRecently, we showed that the oncolytic vaccinia virus GLV-1h68 has a significant therapeutic potential in treating lymph node metastases of human PC-3 prostate carcinoma in tumor xenografts. In this study, underlying mechanisms of the virus-mediated metastases reduction were analyzed. Immunohistochemistry demonstrated that virus-treatment resulted in a drastically decrease of blood and lymph vessels, representing essential routes for PC-3 cell migration, in both tumors and metastases.
View Article and Find Full Text PDFVirotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.
View Article and Find Full Text PDFBackground: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic.
Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects.
Background: Oncolytic viral tumor therapy is an emerging field in the fight against cancer with rising numbers of clinical trials and the first clinically approved product (Adenovirus for the treatment of Head and Neck Cancer in China) in this field. Yet, until recently no general (bio)marker or reporter gene was described that could be used to evaluate successful tumor colonization and/or transgene expression in other biological therapies.
Methods: Here, a bacterial glucuronidase (GusA) encoded by biological therapeutics (e.
Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties.
Methods And Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter.
Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture.
View Article and Find Full Text PDFBackground: Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB)-deficient Listeria monocytogenes strain (Lm-spa+), which expresses protein A of Staphylococcus aureus (SPA) and anchors SPA in the correct orientation on the bacterial cell surface.
Results: This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody.
Specific colonization of solid tumors by bacteria opens the way to novel approaches in both tumor diagnosis and therapy. However, even non-pathogenic bacteria induce responses by the immune system, which could be devastating for a tumor bearing patient. As such effects are caused e.
View Article and Find Full Text PDFBreast cancer is the most common cause of cancer-related death worldwide, thus remaining a crucial health problem among women despite advances in conventional therapy. Therefore, new alternative strategies are needed for effective diagnosis and treatment. One approach is the use of oncolytic viruses for gene-directed enzyme prodrug therapy.
View Article and Find Full Text PDFCanine mammary carcinoma is a highly metastatic tumor that is poorly responsive to available treatment. Therefore, there is an urgent need to identify novel agents for therapy of this disease. Recently, we reported that the oncolytic vaccinia virus GLV-1h68 could be a useful tool for therapy of canine mammary adenoma in vivo.
View Article and Find Full Text PDFDespite promising results and increasing attention in bacterial cancer therapy, surprisingly little is known about initial tumor colonization and the interaction between bacteria and surrounding tumor tissue. Here, we analyzed the role of chemotaxis, motility, and metabolism both in Escherichia coli and Salmonella enterica serovar Typhimurium strains upon intravenous injection into tumor-bearing mice. In contrast to previous models, we found that chemotaxis and motility do not play a significant role in tumor colonization and bacterial distribution within the tumor.
View Article and Find Full Text PDFVirotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In the current study, we analyzed the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 against two human prostate cancer cell lines DU-145 and PC-3 in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 was able to infect, replicate in, and lyse these prostate cancer cells in culture.
View Article and Find Full Text PDF