Publications by authors named "Strijbis K"

The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for assays, particularly the generation of a mucus layer, has proven to be challenging.

View Article and Find Full Text PDF

Unlabelled: Bacterial vaginosis (BV) is a polymicrobial infection of the female reproductive tract. BV is characterized by replacement of health-associated species by diverse anerobic bacteria, including the well-known and are anerobes that are found in a significant number of BV patients, but their contributions to the disease process remain to be determined. Defining characteristics of anerobic overgrowth in BV are adherence to the mucosal surface and the increased activity of mucin-degrading enzymes such as sialidases in vaginal secretions.

View Article and Find Full Text PDF

Dysbiosis of the vaginal microbiome poses a serious risk for sexual human immunodeficiency virus type 1 (HIV-1) transmission. Prevotella spp are abundant during vaginal dysbiosis and associated with enhanced HIV-1 susceptibility; however, underlying mechanisms remain unclear. Here, we investigated the direct effect of vaginal bacteria on HIV-1 susceptibility of vaginal CD4+ T cells.

View Article and Find Full Text PDF

Mucin 1 (MUC1) is a transmembrane mucin expressed at the apical surface of epithelial cells at mucosal surfaces. MUC1 has a barrier function against bacterial invasion and is well known for its aberrant expression and glycosylation in adenocarcinomas. The MUC1 extracellular domain contains a variable number of tandem repeats (VNTR) of 20 amino acids, which are heavily -linked glycosylated.

View Article and Find Full Text PDF

Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane.

View Article and Find Full Text PDF

infection is expected to become the most common healthcare-associated infection worldwide. -induced pathogenicity is significantly attributed to its enterotoxin, TcdA, which primarily targets Rho-GTPases involved in regulating cytoskeletal and tight junction (TJ) dynamics, thus leading to cytoskeleton breakdown and ultimately increased intestinal permeability. This study investigated whether two non-digestible oligosaccharides (NDOs), alginate (AOS) and chitosan (COS) oligosaccharides, possess antipathogenic and barrier-protective properties against bacteria and TcdA toxin, respectively.

View Article and Find Full Text PDF

Mucins play an essential role in protecting the respiratory tract against microbial infections while also acting as binding sites for bacterial and viral adhesins. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance. Transmembrane mucins MUC1, MUC4, and MUC16 can restrict microbial invasion at the apical surface of the epithelium.

View Article and Find Full Text PDF

Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation.

View Article and Find Full Text PDF

Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs.

View Article and Find Full Text PDF
Article Synopsis
  • Fucosidases are linked to various health issues, including certain cancers and infections, and are important for gut health.
  • Current detection techniques mainly focus on one type of fucosidase, but there’s a need for methods to detect the other type.
  • A new probe that labels both types of fucosidases has been developed, allowing for enhanced detection and imaging of their activity in live bacteria.
View Article and Find Full Text PDF

At the intestinal host-microbe interface, the transmembrane mucin MUC1 can function as a physical barrier as well as a receptor for bacteria. MUC1 also influences epithelial cell morphology and receptor function. Various bacterial pathogens can exploit integrins to infect eukaryotic cells.

View Article and Find Full Text PDF

GH29 α-l-fucosidases catalyze hydrolysis of terminal α-l-fucosyl linkages with varying specificity and are expressed by prominent members of the human gut microbiota. Both homeostasis and dysbiosis at the human intestinal microbiota interface have been correlated with altered fucosidase activity. Herein we describe the development of a 2-deoxy-2-fluoro fucosyl fluoride derivative with an azide mini-tag as an activity-based probe (ABP) for selective in vitro labelling of GH29 α-l-fucosidases.

View Article and Find Full Text PDF

Mucus plays a pivotal role in protecting the respiratory tract against microbial infections. It acts as a primary contact site to entrap microbes and facilitates their removal from the respiratory tract via the coordinated beating of motile cilia. The major components of airway mucus are heavily -glycosylated mucin glycoproteins, divided into gel-forming mucins and transmembrane mucins.

View Article and Find Full Text PDF

The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non-saccharolytic, but recently it emerged that l-fucose plays a central role in C. jejuni virulence. Half of C.

View Article and Find Full Text PDF

Dysbiosis of the vaginal microbiome as a result of overgrowth of anaerobic bacteria leads to bacterial vaginosis (BV) which is associated with increased inflammation in the genital mucosa. Moreover, BV increases susceptibility to sexual transmitted infections (STIs) and is associated with adverse pregnancy outcomes. It remains unclear how specific vaginal aerobic and anaerobic bacteria affect health and disease.

View Article and Find Full Text PDF

The cellular invasion machinery of the enteric pathogen Salmonella consists of a type III secretion system (T3SS) with injectable virulence factors that induce uptake by macropinocytosis. Salmonella invasion at the apical surface of intestinal epithelial cells is inefficient, presumably because of a glycosylated barrier formed by transmembrane mucins that prevents T3SS contact with host cells. We observed that Salmonella is capable of apical invasion of intestinal epithelial cells that express the transmembrane mucin MUC1.

View Article and Find Full Text PDF

Mucosal surfaces line our body cavities and provide the interaction surface between commensal and pathogenic microbiota and the host. The barrier function of the mucosal layer is largely maintained by gel-forming mucin proteins that are secreted by goblet cells. In addition, mucosal epithelial cells express cell-bound mucins that have both barrier and signaling functions.

View Article and Find Full Text PDF

Flagella are nanofibers that drive bacterial movement. The filaments are generally composed of thousands of tightly packed flagellin subunits with a terminal cap protein, named FliD. Here, we report that the FliD protein of the bacterial pathogen Campylobacter jejuni binds to host cells.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists.

View Article and Find Full Text PDF

The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway.

View Article and Find Full Text PDF

The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C.

View Article and Find Full Text PDF

Membrane reshaping resides at the core of many important cellular processes, and among its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3 (orf19.1861).

View Article and Find Full Text PDF

The commensal yeast Candida albicans is part of the human intestinal microflora and is considered a "pathobiont", a resident microbe with pathogenic potential yet harmless under normal conditions. The aim of this study was to investigate the effect of C. albicans on inflammation of the intestinal tract and the role of Bruton's tyrosine kinase (Btk).

View Article and Find Full Text PDF

Diacylglycerol (DAG) is a bioactive lipid with diverse biological roles. DAG transiently accumulates in a membrane upon receipt of an appropriate stimulus that activates phospholipase C to cleave phospholipids. The resulting hydrolysis product DAG binds to proteins such as protein kinase C to initiate a variety of downstream cellular processes.

View Article and Find Full Text PDF

Circular proteins occur naturally and have been found in microorganisms, plants, and eukaryotes where they are commonly involved in host defense. Properties of circular proteins include enhanced resistance to exoproteases, increased thermostability, longer life spans, and increased activity. Using an enzymatic approach based on the bacterial sortase A (SrtA) transpeptidase, N- and C-termini of conventional linear proteins can be linked resulting in a circular protein.

View Article and Find Full Text PDF