Publications by authors named "Striebich R"

The ability of the psychrotrophic bacterium SI8 to grow and degrade aromatic hydrocarbons efficiently at low temperature is shown in this study. The robust growth of SI8 was demonstrated in jet fuel and an aromatic blend. The bacterium showed 2.

View Article and Find Full Text PDF

A toxicological investigation was conducted for alcohol-to-jet (ATJ) fuels intended as a 50:50 blend with petroleum-derived fuel Jet Propulsion (JP)-8. The ATJ synthetic paraffinic kerosene (SPK) fuel was produced by Gevo (Englewood CO) and derived either from biomass (bio) or non-biomass sources. All toxicity tests were performed with one or both ATJ fuels following addition of a standard additive package required for JP-8.

View Article and Find Full Text PDF

The U.S. Air Force (USAF) has pursued development of alternative fuels to augment or replace petroleum-based jet fuels.

View Article and Find Full Text PDF

Background: Examination of complex biological systems has long been achieved through methodical investigation of the system's individual components. While informative, this strategy often leads to inappropriate conclusions about the system as a whole. With the advent of high-throughput "omic" technologies, however, researchers can now simultaneously analyze an entire system at the level of molecule (DNA, RNA, protein, metabolite) and process (transcription, translation, enzyme catalysis).

View Article and Find Full Text PDF

can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. ATCC 33988 is highly adapted to hydrocarbons, while strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel.

View Article and Find Full Text PDF

Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.

View Article and Find Full Text PDF

Pseudomonas frederiksbergensis strain SI8 is a psychrotrophic bacterium capable of efficient aerobic degradation of aromatic hydrocarbons. The draft genome of P. frederiksbergensis SI8 is 6.

View Article and Find Full Text PDF

Unlabelled: Aircraft turbine engines are a significant source of particulate matter (PM) and gaseous emissions in the vicinity of airports and military installations. Hazardous air pollutants (HAPs) (e.g.

View Article and Find Full Text PDF

In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures.

View Article and Find Full Text PDF

Fuel is a harsh environment for microbial growth. However, some bacteria can grow well due to their adaptive mechanisms. Our goal was to characterize the adaptations required for Pseudomonas aeruginosa proliferation in fuel.

View Article and Find Full Text PDF

In recent years, there has been considerable concern over the release of methyl tert-butyl ether (MTBE), a gasoline additive, into the aquifers used as potable water sources. MTBE readily dissolves in water and has entered the environment via gasoline spills and leaking storage tanks. In this paper, we investigate ozonation and UV-ozonation for treatment of MTBE in contaminated drinking water sources.

View Article and Find Full Text PDF

The purpose of this study is to determine whether gas chromatography (GC)-atomic emission detection (AED) can be used in a low-resolution mode for rapid, accurate determinations of total sulfur in fuels at trace levels to complement other popular methods of total sulfur analysis. A method for the rapid determination of total sulfur in fuels (called "fast GC-AED") is developed. The method is tested on gasoline, jet fuel, kerosene, and diesel fuel with sulfur concentrations ranging from 125 mg/L down to 2.

View Article and Find Full Text PDF

The identification and quantitation of non-method-specific target analytes have greater importance with respect to EPA's current combustion strategy. The risk associated with combustion process emissions must now be characterized. EPA has recently released draft guidance on procedures for the collection of emissions data to support and augment site-specific risk assessments (SSRAs) as part of the hazardous waste incineration permitting process.

View Article and Find Full Text PDF

Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions.

View Article and Find Full Text PDF

The quantitative analysis of phenolic and amine-containing petroleum additives can be challenging. One such compound-N,N'-disalicylidene-1,2-propanediamine, a common metal deactivator additive (MDA)--is thought to inhibit fuel oxidation catalyzed by metals both in the fuel and on surfaces. The ability to measure the concentration of MDA in storage stability tests, thermal-stressing studies, and field samples is important.

View Article and Find Full Text PDF

The high-temperature combustion of synthetic ester turbine engine lubricants has been performed by diluting the lubricant 5, 15, or 25% in diesel fuel and burning the mixture in a pilot-scale boiler facility. The effluent gas from this combustion system was carefully monitored for the formation of a potent neurotoxin, trimethylolpropane phosphate (TMPP). Although TMPP was not detected in the gaseous effluent, elevated levels of the neurotoxin were found in scrapings from the inside of the boiler system.

View Article and Find Full Text PDF