We have designed, fabricated, and characterized a guided mode resonance notch filter operating in the technologically vital mid-wave infrared (MWIR) region of the electromagnetic spectrum. The filter provides a bandstop at λ≈4.1 μm, with a 12 dB extinction on resonance.
View Article and Find Full Text PDFThe responsivity of room-temperature, semiconductor-based photodetectors consisting of resonant RF circuits coupled to microstrip buslines is investigated. The dependence of the photodetector response on the semiconductor material and RF circuit geometry is presented, as is the detector response as a function of the spatial position of the incident light. We demonstrate significant improvement in detector response by choice of photoconductive material, and for a given material, by positioning our optical signal to overlap with positions of RF field enhancement.
View Article and Find Full Text PDFWe present a review of existing and potential next-generation far-infrared (20-60 μm) optical materials and devices. The far-infrared is currently one of the few remaining frontiers on the optical spectrum, a space underdeveloped and lacking in many of the optical and optoelectronic materials and devices taken for granted in other, more technologically mature wavelength ranges. The challenges associated with developing optical materials, structures, and devices at these wavelengths are in part a result of the strong phonon absorption in the Reststrahlen bands of III-V semiconductors that collectively span the far-infrared.
View Article and Find Full Text PDFPlatinum germanides (PtGe) were investigated for infrared plasmonic applications. Layers of Pt and Ge were deposited and annealed. X-ray diffraction identified PtGe(2) and Pt(2)Ge(3) phases, and x-ray photo-electron spectroscopy determined vertical atomic composition profiles for the films.
View Article and Find Full Text PDFWe demonstrate strong-to-perfect absorption across a wide range of mid-infrared wavelengths (5-12µm) using a two-layer system consisting of heavily-doped silicon and a thin high-index germanium dielectric layer. We demonstrate spectral control of the absorption resonance by varying the thickness of the dielectric layer. The absorption resonance is shown to be largely polarization-independent and angle-invariant.
View Article and Find Full Text PDF