Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis.
View Article and Find Full Text PDFEnzyme-promoted assembly: The construction of a hetero-bifunctional protein building block, HaloTag-cutinase, that reacts rapidly and selectively with a small-molecule linker is described. The step-wise combination of these building blocks generates a 300 kDa "megamolecule" with precisely defined domain orientation, connectivity, and composition.
View Article and Find Full Text PDF