Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive.
View Article and Find Full Text PDFHybrid metal-semiconductor nanostructures unifying plasmonic and high-refractive-index materials in a single resonant system demonstrate a wide set of unique optical properties. Such systems are a perspective for a broad palette of applications, but the link between their inner structure and optical properties is a very sensitive issue, which is still not revealed. Here, we describe the influence of internal microstructure of a hybrid gold-silicon nanoparticle (the gold nanoparticle with embedded silicon nanograins) on the up-conversion white-light photoluminescence.
View Article and Find Full Text PDFSecond harmonic generation is a non-linear optical phenomenon in which coherent radiation with frequency interacts with a non-centrosymmetric material and produces coherent radiation at frequency 2. Owing to the exciting physical phenomena that take place during the non-linear optical excitation at the nanoscale, there is currently extensive research in the non-linear optical responses of nanomaterials, particularly in low-dimensional materials. Here, we review recent advancements in the polarization-resolved second harmonic generation propertied from atomically thin two-dimensional (2D) crystals and present a unified theoretical framework to account for their nonlinear optical response.
View Article and Find Full Text PDFPorphyrin-based derivatives have been extensively investigated in photocatalytic, electrocatalytic, and photoelectrocatalytic H production systems as both photosensitizers and catalysts. Recently, their combination with two-dimensional materials, such as graphene oxide, reduced graphene oxide, and graphene quantum dots, has attracted significant attention for hydrogen evolution due to the advanced electronic properties, good stability, and low-cost fabrication of these materials. This mini-review summarizes the recent developments concerning the application of porphyrin-graphene ensembles in catalytic H generation.
View Article and Find Full Text PDFGlass microspheres have gained significant attention over the years in the field of photonics due to their application in whispering gallery mode (WGM) microresonator platforms. However, the synthesis of glass spheres in the micro regime remains challenging, while it relies mostly on complicated synthetic methods or sol-gel chemistry. Herein, we demonstrate the controlled formation of phosphate glass microspheres by means of a simple, fast, low-temperature, post-glass melting thermal treatment of previously quenched glass.
View Article and Find Full Text PDFSize- and shape-dependent unique properties of the metal halide perovskite nanocrystals make them promising building blocks for constructing various electronic and optoelectronic devices. These unique properties together with their easy colloidal synthesis render them efficient nanoscale functional components for multiple applications ranging from light emission devices to energy conversion and storage devices. Recently, two-dimensional (2D) metal halide perovskites in the form of nanosheets (NSs) or nanoplatelets (NPls) are being intensively studied due to their promising 2D geometry which is more compatible with the conventional electronic and optoelectronic device structures where film-like components are usually employed.
View Article and Find Full Text PDFRecent advances in atomically thin two dimensional (2D) anisotropic group IV -VI metal monochalcogenides (MMCs) and their fascinating intrinsic properties and potential applications are hampered due to an ongoing challenge of monolayer isolation. Among the most promising MMCs, tin (II) sulfide (SnS) is an earth-abundant layered material with tunable bandgap and anisotropic physical properties, which render it extraordinary for electronics and optoelectronics. To date, however, the successful isolation of atomically thin SnS single layers at large quantities has been challenging due to the presence of strong interlayer interactions, attributed to the lone-pair electrons of sulfur.
View Article and Find Full Text PDF