Publications by authors named "Strassman A"

Article Synopsis
  • OnabotulinumtoxinA (onabotA) is believed to help reduce migraine symptoms by blocking certain nerve pathways during their activation process in the brain and spinal cord.
  • A study was conducted on anesthetized rats to observe how onabotA injections affected the activation of specific nerve cells in response to a triggering event called cortical spreading depression (CSD).
  • Results showed that onabotA significantly reduced activation in wide-dynamic range neurons, preventing enhanced responses to mechanical stimuli, indicating its effectiveness in moderating migraine-related nerve sensitivity.
View Article and Find Full Text PDF

Tibial spine avulsion injuries, including fractures, are a variant of anterior cruciate ligament injuries. Treatment historically consisted of open reduction and internal fixation of the avulsion fracture, with anterior cruciate ligament reconstruction considered in cases of failed open reduction and internal fixation or residual laxity. However, improved instrumentation has led to the advancement of various arthroscopic techniques for addressing these injuries.

View Article and Find Full Text PDF

Anterior cruciate ligament (ACL) tears are among the most common injuries to the knee. With recent improvements in imaging that allow for more precise identification of ACL tear patterns, improved techniques for repair, and advancements in biological augmentation, there has been a re-emerging interest in primary ACL repair, especially for acute proximal ACL tears. This article aims to describe a surgical technique for primary ACL repair using a re-tensionable all-suture-based construct.

View Article and Find Full Text PDF

Recently, we showed that while atogepant-a small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist-does not fully prevent activation of meningeal nociceptors, it significantly reduces a cortical spreading depression (CSD)-induced early response probability in C fibres and late response probability in Aδ fibres. The current study investigates atogepant effect on CSD-induced activation and sensitization of high threshold (HT) and wide dynamic range (WDR) central dura-sensitive trigeminovascular neurons. In anaesthetized male rats, single-unit recordings were used to assess effects of atogepant (5 mg/kg) versus vehicle on CSD-induced activation and sensitization of HT and WDR trigeminovascular neurons.

View Article and Find Full Text PDF

Background: This study investigated the mechanism of action of atogepant, a small-molecule CGRP receptor antagonist recently approved for the preventive treatment of episodic migraine, by assessing its effect on activation of mechanosensitive C- and Aδ-meningeal nociceptors following cortical spreading depression.

Methods: Single-unit recordings of trigeminal ganglion neurons (32 Aδ and 20 C-fibers) innervating the dura was used to document effects of orally administered atogepant (5 mg/kg) or vehicle on cortical spreading depression-induced activation in anesthetized male rats.

Results: Bayesian analysis of time effects found that atogepant did not completely prevent the activation of nociceptors at the tested dose, but it significantly reduced response amplitude and probability of response in both the C- and the Aδ-fibers at different time intervals following cortical spreading depression induction.

View Article and Find Full Text PDF

OnabotulinumtoxinA (BoNT-A) is an Food and Drug Administration-approved, peripherally acting preventive migraine drug capable of inhibiting meningeal nociceptors. Expanding our view of how else this neurotoxin attenuates the activation of the meningeal nociceptors, we reasoned that if the stimulus that triggers the activation of the nociceptor is lessened, the magnitude and/or duration of the nociceptors' activation could diminish as well. In the current study, we further examine this possibility using electrocorticogram recording techniques, immunohistochemistry, and 2-photon microscopy.

View Article and Find Full Text PDF

Background: OnabotulinumtoxinA and agents that block calcitonin gene‒receptor peptide action have both been found to have anti-migraine effects, but they inhibit different populations of meningeal nociceptors. We therefore tested the effects of combined treatment with onabotulinumtoxinA and the calcitonin gene‒receptor peptide antagonist atogepant on activation/sensitization of trigeminovascular neurons by cortical spreading depression.

Material And Methods: Single-unit recordings were obtained of high-threshold and wide-dynamic-range neurons in the spinal trigeminal nucleus, and cortical spreading depression was then induced in anesthetized rats that had received scalp injections of onabotulinumtoxinA 7 days earlier and intravenous atogepant infusion 1 h earlier.

View Article and Find Full Text PDF

An epileptic seizure can trigger a headache during (ictal) or after (postictal) the termination of the event. Little is known about the pathophysiology of seizure-induced headaches. In the current study, we determined whether a seizure can activate nociceptive pathways that carry pain signals from the meninges to the spinal cord, and if so, to what extent and through which classes of peripheral and central neurons.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs, commonly known as COX-1/COX-2 inhibitors, can be effective in treating mild to moderate migraine headache. However, neither the mechanism by which these drugs act in migraine is known, nor is the specific contribution of COX-1 vs COX-2. We sought to investigate these unknowns using celecoxib, which selectively inhibits the enzymatic activity of COX-2, by determining its effects on several migraine-associated vascular and inflammatory events.

View Article and Find Full Text PDF

Most centrally acting migraine preventive drugs suppress frequency and velocity of cortical spreading depression (CSD). The purpose of the current study was to determine how the new class of peripherally acting migraine preventive drug (ie, the anti-CGRP-mAbs) affect CSD-an established animal model of migraine aura, which affects about 1/3 of people with migraine-when allowed to cross the blood-brain barrier (BBB). Using standard electrocorticogram recording techniques and rats in which the BBB was intentionally compromised, we found that when the BBB was opened, the anti-CGRP-mAb fremanezumab did not prevent the induction, occurrence, or propagation of a single wave of CSD induced by a pinprick, but that both fremanezumab and its isotype were capable of slowing down the propagation velocity of CSD and shortening the period of profound depression of spontaneous cortical activity that followed the spreading depolarization.

View Article and Find Full Text PDF

Background: The presence of calcitonin gene-related peptide and its receptors in multiple brain areas and peripheral tissues previously implicated in migraine initiation and its many associated symptoms raises the possibility that humanized monoclonal anti-calcitonin gene-related peptide antibodies (CGRP-mAbs) can prevent migraine by modulating neuronal behavior inside and outside the brain. Critical to our ability to conduct a fair discussion over the mechanisms of action of CGRP-mAbs in migraine prevention is data generation that determines which of the many possible peripheral and central sites are accessible to these antibodies - a question raised frequently due to their large size.

Material And Methods: Rats with uncompromised and compromised blood-brain barrier (BBB) were injected with Alexa Fluor 594-conjugated fremanezumab (Frema594), sacrificed 4 h or 7 d later, and relevant tissues were examined for the presence of Frema594.

View Article and Find Full Text PDF

Background: Botulinum neurotoxin type A, an FDA-approved prophylactic drug for chronic migraine, is thought to achieve its therapeutic effect through blocking activation of unmyelinated meningeal nociceptors and their downstream communications with myelinated nociceptors and potentially the vasculature and immune cells. Prior investigations to determine botulinum neurotoxin type A effects on meningeal nociceptors were carried out in male rats and tested with stimuli that act outside the blood brain barrier. Here, we sought to explore the effects of extracranial injections of botulinum neurotoxin type A on activation of meningeal nociceptors by cortical spreading depression, an event which occurs inside the blood brain barrier, in female rats.

View Article and Find Full Text PDF

In a prior study using laser scanning photostimulation, we found a pronounced cell type-specific mediolateral asymmetry in the local synaptic connectivity in the superficial laminae of the spinal dorsal horn (Kosugi M, Kato G, Lukashov S, Pendse G, Puskar Z, Kozsurek M, Strassman AM. 591: 1935-1949, 2013). To obtain information on dorsal horn organization that might complement findings from microelectrode studies, voltage-sensitive dye imaging was used in the present study to examine patterns of activity evoked by focal electrical stimulation, in the presence and absence of synaptic blocking agents, at different positions in transverse, parasagittal, and horizontal slices of the dorsal horn of 2- to 3-wk -old male rats.

View Article and Find Full Text PDF

Cortical spreading depression (CSD) is a wave of neuronal depolarization thought to underlie migraine aura. Calcitonin gene-related peptide (CGRP) is a potent vasodilator involved in migraine pathophysiology. Evidence for functional connectivity between CSD and CGRP has triggered scientific interest in the possibility that CGRP antagonism may disrupt vascular responses to CSD and the ensuing plasma protein extravasation (PPE).

View Article and Find Full Text PDF

Current understanding of the origin of occipital headache falls short of distinguishing between cause and effect. Most preclinical studies involving trigeminovascular neurons sample neurons that are responsive to stimulation of dural areas in the anterior 2/3 of the cranium and the periorbital skin. Hypothesizing that occipital headache may involve activation of meningeal nociceptors that innervate the posterior ⅓ of the dura, we sought to map the origin and course of meningeal nociceptors that innervate the posterior dura overlying the cerebellum.

View Article and Find Full Text PDF

Objective: Cortical spreading depression (CSD) has long been implicated in migraine attacks with aura. The process by which CSD, a cortical event that occurs within the blood-brain barrier (BBB), results in nociceptor activation outside the BBB is likely mediated by multiple molecules and cells. The objective of this study was to determine whether CSD activates immune cells inside the BBB (pia), outside the BBB (dura), or in both, and if so, when.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP), the most abundant neuropeptide in primary afferent sensory neurons, is strongly implicated in the pathophysiology of migraine headache, but its role in migraine is still equivocal. As a new approach to migraine treatment, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs) were developed to reduce the availability of CGRP, and were found effective in reducing the frequency of chronic and episodic migraine. We recently tested the effect of fremanezumab (TEV-48125), a CGRP-mAb, on the activity of second-order trigeminovascular dorsal horn neurons that receive peripheral input from the cranial dura, and found a selective inhibition of high-threshold but not wide-dynamic range class of neurons.

View Article and Find Full Text PDF

A large body of evidence supports an important role for calcitonin gene-related peptide (CGRP) in migraine pathophysiology. This evidence gave rise to a global effort to develop a new generation of therapeutics that inhibit the interaction of CGRP with its receptor in migraineurs. Recently, a new class of such drugs, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs), were found to be effective in reducing the frequency of migraine.

View Article and Find Full Text PDF

Gene trap mutagenesis is a powerful tool to create loss-of-function mutations in mice and other model organisms. Modifications of traditional gene trap cassettes, including addition of conditional features in the form of Flip-excision (FlEx) arrays to enable directional gene trap cassette inversions by Cre and Flpe site-specific recombinases, greatly enhanced their experimental potential. By taking advantage of these conditional gene trap cassettes, we developed a generic strategy for generating conditional mutations and validated this strategy in mice carrying a multipurpose allele of the transcription factor gene.

View Article and Find Full Text PDF

Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min.

View Article and Find Full Text PDF

Background Application of inflammatory mediators to the cranial dura has been used as a method to activate and sensitize neurons in the meningeal sensory pathway in preclinical behavioral studies of headache mechanisms. However, the relatively high concentrations and volumes used in these studies raise the question of whether the applied agents might pass through the dura to act directly on central neurons, thus bypassing the dural afferent pathway. Methods We used a radiolabeling approach to quantify the meningeal permeability of two of the inflammatory mediators, 5-HT and PGE, when applied to the cranial dura as part of an inflammatory mixture used in preclinical headache models.

View Article and Find Full Text PDF

Microglia survey and directly contact neurons in both healthy and damaged brain, but the mechanisms and functional consequences of these contacts are not yet fully elucidated. Combining two-photon imaging and patch clamping, we have developed an acute experimental model for studying the role of microglia in CNS excitotoxicity induced by neuronal hyperactivity. Our model allows us to simultaneously examine the effects of repetitive supramaximal stimulation on axonal morphology, neuronal membrane potential, and microglial migration, using cortical brain slices from Iba-1 eGFP mice.

View Article and Find Full Text PDF

Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between-systems neuroadaptation involving over-recruitment of key limbic structures (e.

View Article and Find Full Text PDF

Background: Administration of onabotulinumtoxinA (BoNT-A) to peripheral tissues outside the calvaria reduces the number of days chronic migraine patients experience headache. Because the headache phase of a migraine attack, especially those preceded by aura, is thought to involve activation of meningeal nociceptors by endogenous stimuli such as changes in intracranial pressure (i.e.

View Article and Find Full Text PDF

Laser scanning photostimulation was used to map the distribution of the synaptic input zones (sites that give local synaptic inputs) for dorsal horn laminae III-IV neurons, in parasagittal and transverse slices of the rat lumbar spinal cord, and examine how these inputs differed for neurons of different morphologies. All neurons received local excitatory and inhibitory synaptic inputs from within laminae III-IV, while a subset of neurons also received excitatory input from the superficial laminae, especially lamina IIi, as well as the II/III border region. Two anatomical properties were found to be predictive of the dorsoventral position of a neuron's input zone relative to its soma: (1) both excitatory and inhibitory input zones were more dorsal for neurons with longer dorsal dendrites, and (2) excitatory, but not inhibitory, input zones were more dorsal (relative to the soma) for more ventral neurons, with the transition between the dorsal input zones of laminae III-IV neurons and the ventral input zones of lamina II neurons occurring at the II/III border.

View Article and Find Full Text PDF