Publications by authors named "Strambi C"

Since the discovery of adult neurogenesis, a major issue is the role of newborn neurons and the function-dependent regulation of adult neurogenesis. We decided to use an animal model with a relatively simple brain to address these questions. In the adult cricket brain as in mammals, new neurons are produced throughout life.

View Article and Find Full Text PDF

L-glutamate is the major excitatory neurotransmitter in the mammalian brain. Specific proteins, the Na+/K+-dependent high affinity excitatory amino acid transporters (EAATs), are involved in the extracellular clearance and recycling of this amino acid. Type I synapses of the Drosophila neuromuscular junction (NMJ) similarly use L-glutamate as an excitatory transmitter.

View Article and Find Full Text PDF

From invertebrates to humans, it has been demonstrated that new neurons are added to specific brain structures throughout adult life. In the house cricket, adult neurogenesis occurs in the mushroom bodies, the main sensory integrative center of the brain, often considered an analogue of vertebrate hippocampus. We have previously shown that this neurogenesis can be modulated by hormones through the polyamine pathway and by environmental conditions through sensory inputs and the nitric oxide pathway.

View Article and Find Full Text PDF

In the adult cricket, neurogenesis occurs in the mushroom bodies, the main integrative structures of the insect brain. Mushroom body neuroblast proliferation is modulated in response to environmental stimuli. However, the mechanisms underlying these effects remain unspecified.

View Article and Find Full Text PDF

Although neurogenesis in the adult is known to be regulated by various internal cues such as hormones, growth factors and cell-adherence molecules, downstream elements underlying their action at the cellular level still remain unclear. We previously showed in an insect model that polyamines (putrescine, spermidine and spermine) play specific roles in adult brain neurogenesis. Here, we demonstrate their involvement in the regulation of secondary neurogenesis in the rodent brain.

View Article and Find Full Text PDF

L-glutamate is both the major brain excitatory neurotransmitter and a potent neurotoxin in mammals. Glutamate excitotoxicity is partly responsible for cerebral traumas evoked by ischemia and has been implicated in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). In contrast, very little is known about the function or potential toxicity of glutamate in the insect brain.

View Article and Find Full Text PDF

Although adult neurogenesis has now been demonstrated in many different species, the functional role of newborn neurons still remains unclear. In the house cricket, a cluster of neuroblasts, located in the main associative center of the insect brain, keeps producing new interneurons throughout the animal's life. Here we address the functional significance of adult neurogenesis by specific suppression of neuroblast proliferation using gamma irradiation of the insect's head and by examining the impact on the insect's learning ability.

View Article and Find Full Text PDF

In the adult cricket brain, a cluster of neuroblasts produces new interneurons that integrate into the mushroom body (MB), the main associative structure for multisensory information of the insect brain. In previous study we showed the antagonist role of the two morphogenetic hormones, juvenile hormone (JH) and ecdysone, on the regulation of adult MB neurogenesis in vivo. In order to examine whether these hormones act directly on neural progenitor cells, we developed an organotypic culture of MB cortices.

View Article and Find Full Text PDF

Mushroom bodies represent the main sensory integrative center of the insect brain and probably play a major role in the adaptation of behavioral responses to the environment. Taking into account the continuous neurogenesis of cricket mushroom bodies, we investigated ontogenesis of this brain structure. Using BrdU labeling, we examined the fate of neuroblast progeny during the postembryonic development.

View Article and Find Full Text PDF

Mushroom bodies are recognized as a multimodal integrator for sensorial stimuli. The present study analyzes cricket mushroom body development from embryogenesis to adulthood. In the house cricket, Kenyon cells were born from a group of neuroblasts located at the apex of mushroom bodies.

View Article and Find Full Text PDF

Although most brain neurons are produced during embryonic and early postnatal development, recent studies clearly demonstrated in a wide range of species from invertebrates to humans that new neurons are added to specific brain structures throughout adult life. Hormones, neurotransmitters, and growth factors as well as environmental conditions modulate this neurogenesis. In this study, we address the role of sensory inputs in the regulation of adult neural progenitor cell proliferation in an insect model.

View Article and Find Full Text PDF

Until recently, it was believed that adult brains were unable to generate any new neurons. However, it is now commonly known that stem cells remain in the adult central nervous system and that adult vertebrates as well as adult invertebrates are currently adding new neurons in some specialized structures of their central nervous system. In vertebrates, the subventricular zone and the dentate gyrus of the hippocampus are the sites of neuronal precursor proliferation.

View Article and Find Full Text PDF

In the house cricket (Acheta domesticus) mushroom bodies, neurogenesis still occurs during adulthood. Using in vitro approaches, the respective roles of natural polyamines in neurogenesis were examined. Mushroom body neuroblast proliferation was assayed in organotypic culture using 5-bromo, 2'-deoxyuridine labeling.

View Article and Find Full Text PDF

Mushroom bodies are the main integrative structures of insect brain. They receive sensory information from the eyes, the palps, and the antennae. In the house cricket, Acheta domesticus, a cluster of mushroom body neuroblasts keeps producing new interneurons during an insect's life span.

View Article and Find Full Text PDF

Mushroom bodies, which are the main integrative centre for insect sensorial information, play a critical role in associative olfactory learning and memory. This paired brain structure contains interneurons grouped in a cortex, sending their axons into organized neuropiles. In the house cricket (Acheta domesticus) brain, persistent neuroblasts proliferate throughout adult life.

View Article and Find Full Text PDF

The distribution of putative RDL-like GABA receptors and of gamma-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx.

View Article and Find Full Text PDF

The dissociation and maintenance in culture of cells derived from the mushroom bodies of adult crickets (Acheta domesticus) are described. This primary culture was developed in order to investigate maturation and differentiation of mushroom-body cells including Kenyon cells, the major intrinsic interneurons of mushroom bodies, which have been shown to be involved in learning and memory in insects. Three distinct cell types were observed, all identified as neural cells on the basis of their size, morphology and immunocytochemical staining with horseradish peroxidase.

View Article and Find Full Text PDF

Persistent neurogenesis in an adult insect brain was recently shown to be stimulated by juvenile hormone (JH). This morphogenetic hormone was also shown to act on polyamine biosynthesis. To analyze the possible involvement of polyamines in the neurogenic action of JH, two series of experiments were carried out with adult female crickets, Acheta domesticus: (i) inhibition of the first key enzyme in polyamine biosynthesis, ornithine decarboxylase, with alpha-difluoromethylornithine (alpha-DFMO), and examination of the effects of this treatment on the neuroblast proliferation response to JH; and (ii) examination of the effects of putrescine supplementation on the mitotic index of JH-deprived and alpha-DFMO-treated females.

View Article and Find Full Text PDF

The role of polyamines in the expression of cricket oviposition, a juvenile hormone-dependent behavior, was investigated using a specific inhibitor of ornithine decarboxylase, alpha-difluoromethylornithine (alpha-DFMO). The fat body of treated female house crickets (Acheta domesticus) did not show any putrescine and presented reduced levels of spermidine, whereas spermine titres were significantly enhanced. In nervous tissue, alpha-DFMO did not affect spermine titres but induced a severe drop in spermidine levels.

View Article and Find Full Text PDF

The occurrence of neurogenesis in mushroom bodies of adult insects belonging to several orthopteroid and coleopteran families is described. Using injections of 5-bromo, T2'-deoxyuridine, we showed that neuroblasts, which are progenitors of Kenyon cells during preimaginal instars, continue to divide in adult Acheta domesticus. Their progeny constitute a central column in mushroom body cortices of 3-week-old females.

View Article and Find Full Text PDF

The daily titers of juvenile hormone and ecdysteroids were determined for workers of the Eastern subterranean termite Reticulitermes flavipes (Kollar) (Isoptera, Rhinotermitidae) following isolation of the workers from soldiers and reproductives. Experiments have demonstrated that isolation leads to biochemical and physiological changes that result in a presolider molt. Juvenile hormone (JH) and molting hormone (MH) titers were determined in hemolymph samples using radioimmunoassay.

View Article and Find Full Text PDF

Juvenile hormone from the hemolymph of adult worker honey bees of known age and behavioral status was extracted and analyzed by two different radioimmunoassays in two independent laboratories. The assays are different in hapten attachment, radiolabeled tracer, and the method by which bound and unbound hormone are separated. Despite these differences in the methods, hormone determinations were in excellent agreement at lower levels (0-50 ng/ml) but diverged as the hormone concentrations increased (> 50 ng/ml).

View Article and Find Full Text PDF

Three experiments were performed to determine the role of juvenile hormone (JH) in worker reproduction in queenless colonies of honey bees. In Experiment 1, egg-laying workers had low hemolymph titers of JH, as did bees engaged in brood care, while foragers had significantly higher titers. Experiment 2 confirmed these findings by demonstrating that laying workers have significantly lower rates of JH biosynthesis than foragers do.

View Article and Find Full Text PDF

Juvenile hormone (JH) and ecdysteroid titers are critical factors for caste development and metamorphosis in the last larval instar of the honeybee, Apis mellifera. Two highly sensitive radioimmunoassays were used for the determination of these hormones in the hemolymph. For juvenile hormone, which is of prime importance for the control of caste development in honeybees, our data show a caste-specific peak in queen larvae of the early fifth instar.

View Article and Find Full Text PDF