Publications by authors named "Stralis-Pavese N"

Social insect reproductives and non-reproductives represent ideal models with which to understand the expression and regulation of alternative phenotypes. Most research in this area has focused on the developmental regulation of reproductive phenotypes in obligately social taxa such as honey bees, while relatively few studies have addressed the molecular correlates of reproductive differentiation in species in which the division of reproductive labour is established only in plastic dominance hierarchies. To address this knowledge gap, we generate the first genome for any stenogastrine wasp and analyse brain transcriptomic data for non-reproductives and reproductives of the facultatively social species Liostenogaster flavolineata, a representative of one of the simplest forms of social living.

View Article and Find Full Text PDF

Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi.

View Article and Find Full Text PDF

Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity.

View Article and Find Full Text PDF

Berry shrivel (BS) is one of the prominent and still unresolved ripening physiological disorders in grapevine. The causes of BS are unclear, and previous studies focused on the berry metabolism or histological studies, including cell viability staining in the rachis and berries of BS clusters. Herein, we studied the transcriptional modulation induced by BS in the rachis of pre-symptomatic and symptomatic clusters with a custom-made microarray qPCR in relation to a previous RNASeq study of BS berries.

View Article and Find Full Text PDF

Cultivated beets (Beta vulgaris ssp. vulgaris), including sugar beet, rank among the most important crops. The wild ancestor of beet crops is the sea beet Beta vulgaris ssp.

View Article and Find Full Text PDF

We propose to use the natural variation between individuals of a population for genome assembly scaffolding. In today's genome projects, multiple accessions get sequenced, leading to variant catalogs. Using such information to improve genome assemblies is attractive both cost-wise as well as scientifically, because the value of an assembly increases with its contiguity.

View Article and Find Full Text PDF

Third-generation sequencing technologies provided by Pacific Biosciences and Oxford Nanopore Technologies generate read lengths in the scale of kilobasepairs. However, these reads display high error rates, and correction steps are necessary to realize their great potential in genomics and transcriptomics. Here, we compare properties of PacBio and Nanopore data and assess correction methods by Canu, MARVEL and proovread in various combinations.

View Article and Find Full Text PDF

Background: Tannerella forsythia is a bacterial pathogen implicated in periodontal disease. Numerous virulence-associated T. forsythia genes have been described, however, it is necessary to expand the knowledge on T.

View Article and Find Full Text PDF

Mycoparasites, e.g. fungi feeding on other fungi, are prominent within the genus Trichoderma and represent a promising alternative to chemical fungicides for plant disease control.

View Article and Find Full Text PDF

Chinese Hamster Ovary (CHO) cells are the preferred cell line for production of biopharmaceuticals. These cells are capable to grow without serum supplementation, but drastic changes in their phenotype occur during adaptation to protein-free growth, which typically include the change to a suspension phenotype with reduced growth rate. A possible approach to understand this transformation, with the intention to counteract the reduction in growth by targeted supplementation of protein-free media, is gene expression profiling.

View Article and Find Full Text PDF

Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic.

View Article and Find Full Text PDF

There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard 'dashboard' of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias.

View Article and Find Full Text PDF

The analysis of methanotroph community composition is relevant to studies of methane oxidation in a number of environments where methane is a significant carbon source. The development and application of a microarray targeting the particulate methane monooxygenase gene (pmoA) have allowed a high-throughput, semiquantitative analysis of the major methanotroph groups in a number of different environments. Here we describe the use of a pmoA-based short oligo array for the analysis of methanotroph populations in sediment samples.

View Article and Find Full Text PDF

Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle).

View Article and Find Full Text PDF

Landfills represent a major source of methane in the atmosphere. In a previous study, we demonstrated that earthworm activity in landfill cover soil can increase soil methane oxidation capacity. In this study, a simulated landfill cover soil mesocosm (1 m × 0.

View Article and Find Full Text PDF

Microbial diagnostic microarrays (MDMs) are highly parallel hybridization platforms containing multiple sets of immobilized oligonucleotide probes used for parallel detection and identification of many different microorganisms in environmental and clinical samples. Each probe is approximately specific to a given group of organisms. Here we describe the protocol used to develop and validate an MDM method for the semiquantification of a range of functional genes--in this case, particulate methane monooxygenase (pmoA)--and we give an example of its application to the study of the community structure of methanotrophs and functionally related bacteria in the environment.

View Article and Find Full Text PDF

Methylocella spp. are facultative methanotrophs, which are able to grow not only on methane but also on multicarbon substrates such as acetate, pyruvate or malate. Methylocella spp.

View Article and Find Full Text PDF

The role of methane-oxidizing bacteria (MOB) in alpine environments is poorly understood, but is of importance given the abundance of alpine environments and the role of MOB in the global carbon cycle. Using a combination of approaches we examined both seasonal and land usage effects on the ecology of microbial methane oxidation in an alpine meadow soil. Analysis of the abundance and diversity of MOB demonstrated that the abundance and diversity of the dominant type II MOB, predominantly Metylocystis and relatives, was only influenced by season.

View Article and Find Full Text PDF

Whole-genome amplification (WGA) using multiple displacement amplification (MDA) has recently been introduced to the field of environmental microbiology. The amplification of single-cell genomes or whole-community metagenomes decreases the minimum amount of DNA needed for subsequent molecular community analyses. The resolution of profiling methods of environmental microbial communities will increase substantially by the use of the whole-community genome amplification (WCGA) procedure, assuming that the original community composition is not affected qualitatively as well as quantitatively.

View Article and Find Full Text PDF

Methylotrophs play an essential role in the global carbon cycle due to their participation in methane oxidation and C1 metabolism. Despite this important biogeochemical role, marine and estuarine microorganisms that consume C1 compounds are poorly characterized. In this study, we investigated the diversity of active methylotrophs and methanotrophs in sediment from the Colne Estuary (Brightlingsea, UK).

View Article and Find Full Text PDF

Methanotrophs present in landfill cover soil can limit methane emissions from landfill sites by oxidizing methane produced in landfill. Understanding the spatial and temporal distribution of populations of methanotrophs and the factors influencing their activity and diversity in landfill cover soil is critical to devise better landfill cover soil management strategies. pmoA-based microarray analyses of methanotroph community structure revealed a temporal shift in methanotroph populations across different seasons.

View Article and Find Full Text PDF

Adequate identification of Salmonella enterica serovars is a prerequisite for any epidemiological investigation. This is traditionally obtained via a combination of biochemical and serological typing. However, primary strain isolation and traditional serotyping is time-consuming and faster methods would be desirable.

View Article and Find Full Text PDF

Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied.

View Article and Find Full Text PDF

Biofilters operated for the microbial oxidation of landfill methane at two sites in Northern Germany were analysed for the composition of their methanotrophic community by means of diagnostic microarray targeting the pmoA gene of methanotrophs. The gas emitted from site Francop (FR) contained the typical principal components (CH4, CO2, N2) only, while the gas at the second site Müggenburger Strasse (MU) was additionally charged with non-methane volatile organic compounds (NMVOCs). Methane oxidation activity measured at 22 degrees C varied between 7 and 103 microg CH4 (g dw)(-1) h(-1) at site FR and between 0.

View Article and Find Full Text PDF