Axon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase-ROCK (Rho-associated coiled-coil kinase)-regulatory nonmuscle myosin light-chain phosphorylation signaling pathway. However, the upstream mechanism that activates the RhoA pathway remains unknown.
View Article and Find Full Text PDFThe breast cancer susceptibility protein BRCA1 and its partner BRCA1-associated RING domain protein 1 (BARD1) form an E3-ubiquitin (Ub) ligase complex that acts as a tumor suppressor in mitotic cells. However, the roles of BRCA1-BARD1 in postmitotic cells, such as neurons, remain poorly defined. Here, we report that BRC-1 and BRD-1, the orthologs of BRCA1 and BARD1, are required for adult-specific axon regeneration, which is positively regulated by the EGL-30 Gqα-diacylglycerol (DAG) signaling pathway.
View Article and Find Full Text PDFIn , axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the / gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons.
View Article and Find Full Text PDFIn Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1.
View Article and Find Full Text PDFAxon regeneration is a conserved mechanism induced by axon injury that initiates a neuronal response leading to regrowth of the axon. In , the initiation of axon regeneration is regulated by the JNK MAP kinase (MAPK) pathway. We have previously identified a number of genes affecting the JNK pathway using an RNAi-based screen.
View Article and Find Full Text PDFThe ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the mechanisms regulating axon regeneration are not well understood. Here, we identify the brc-2 gene encoding a homolog of the mammalian BRCA2 tumor suppressor as a regulator of axon regeneration in Caenorhabditis elegans motor neurons.
View Article and Find Full Text PDFFollowing axon injury, a cascade of signaling events is triggered to initiate axon regeneration. However, the mechanisms regulating axon regeneration are not well understood at present. In Caenorhabditis elegans, axon regeneration utilizes many of the components involved in phagocytosis, including integrin and Rac GTPase.
View Article and Find Full Text PDFOrganisms have developed many protective systems to reduce the toxicity from heavy metals. The nematode has been widely used to determine the protective mechanisms against heavy metals. Responses against heavy metals can be monitored by expression of reporter genes, while sensitivity can be determined by quantifying growth or survival rate following exposure to heavy metals.
View Article and Find Full Text PDFThe ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway.
View Article and Find Full Text PDFUnlabelled: The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10.
View Article and Find Full Text PDFThe axon regeneration ability of neurons depends on the interplay of factors that promote and inhibit regeneration. In Caenorhabditis elegans, axon regeneration is promoted by the JNK MAP kinase (MAPK) pathway. Previously, we found that the endocannabinoid anandamide (AEA) inhibits the axon regeneration response of motor neurons after laser axotomy by suppressing the JNK signaling pathway.
View Article and Find Full Text PDFMutations in LRRK2 are linked to autosomal dominant forms of Parkinson's disease. We identified two human proteins that bind to LRRK2: BAG2 and HSC70, which are known to form a chaperone complex. We characterized the role of their Caenorhabditis elegans homologues, UNC-23 and HSP-1, in the regulation of LRK-1, the sole homologue of human LRRK2.
View Article and Find Full Text PDFThe molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration.
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
October 2015
Mitogen-activated protein kinase (MAPK) signaling cascades are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various types of cellular stress. Our evolving understanding of these signal cascades has been facilitated by genetic analyses and physiological characterization in model organisms such as the nematode Caenorhabditis elegans. Genetic and biochemical studies in C.
View Article and Find Full Text PDFThe binding of ligand to epidermal growth factor receptor (EGFR) causes the receptor to become activated and stimulates the endocytosis of EGFR. Early endosomes containing activated EGFR migrate along microtubules as they mature into late endosomes. We have recently shown that LRRK1, which is related to the familial Parkinsonism gene product Park8 (also known as LRRK2), regulates this EGFR transport in a manner dependent on LRRK1 kinase activity.
View Article and Find Full Text PDFThe ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy.
View Article and Find Full Text PDF