Publications by authors named "Strachan N"

Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.

View Article and Find Full Text PDF

Aim: This study aimed to simulate deactivation of Escherichia coli in soils amended with cattle manure after burning, anaerobic digestion, composting, or without treatment.

Method And Results: The Weibull survival function was used to describe deactivation of E. coli.

View Article and Find Full Text PDF

is a bacterial pathogen recognised as a major cause of foodborne illness worldwide. While generally does not grow outside its host, it can survive outside of the host long enough to pose a health concern. This review presents an up-to-date description and evaluation of biological, mathematical, and statistical approaches used to understand the behaviour of this foodborne pathogen and suggests future avenues which can be explored.

View Article and Find Full Text PDF

Campylobacter spp. have been shown to be the most common cause of bacterial gastroenteritis worldwide. Cases of human campylobacteriosis are usually reported as sporadic and not part of an outbreak which makes the identification of the source of infection difficult.

View Article and Find Full Text PDF

Background: Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a pathogen known to reside in cattle feedlots. This retrospective study examined 181 STEC O157:H7 strains collected over 23 years from a closed-system feedlot. All strains were subjected to short-read sequencing, with a subset of 36 also subjected to long-read sequencing.

View Article and Find Full Text PDF

Background: Urinalysis (UA) is often used to screen for bacterial cystitis, regardless of sediment results, and followed up by quantitative urine culture (UC) for definitive diagnosis.

Objectives: Determine prevalence of positive UCs in dogs with inactive urine sediments on routine UA.

Animals: A total of 1049 urine samples with inactive urine sediments and UCs collected from dogs presented to a veterinary specialty hospital between January 2018 and February 2020.

View Article and Find Full Text PDF

The impact of the extent of testing infectious individuals on suppression of COVID-19 is illustrated from the early stages of outbreaks in Germany, the Hubei province of China, Italy, Spain and the UK. The predicted percentage of untested infected individuals depends on the specific outbreak but we found that they typically represent 60-80% of all infected individuals during the early stages of the outbreaks. We propose that reducing the underlying transmission from untested cases is crucial to suppress the virus.

View Article and Find Full Text PDF

Policymakers require consistent and accessible tools to monitor the progress of an epidemic and the impact of control measures in real time. One such measure is the Estimated Dissemination Ratio (EDR), a straightforward, easily replicable, and robust measure of the trajectory of an outbreak that has been used for many years in the control of infectious disease in livestock. It is simple to calculate and explain.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how different organic waste treatment methods affect the spread of harmful bacteria, specifically E. coli, to food crops in a developing country.
  • Fresh cattle manure was treated using anaerobic digestion, burning, and composting, revealing that all methods reduced bacteria levels, but anaerobic digestion proved most effective in lowering contamination in soil and crops.
  • The findings highlight that treating manure before use as fertilizer can significantly lessen the risk of bacterial contamination in food crops, emphasizing the importance of using anaerobic digestion for safer organic fertilization.
View Article and Find Full Text PDF

The new Model for the Agent-based simulation of Faecal Indicator Organisms (MAFIO) is applied to a small (0.42 km) Scottish agricultural catchment to simulate the dynamics of E. coli arising from sheep and cattle farming, in order to provide a proof-of-concept.

View Article and Find Full Text PDF

A new Model for the Agent-based simulation of Faecal Indicator Organisms (MAFIO) is developed that attempts to overcome limitations in existing faecal indicator organism (FIO) models arising from coarse spatial discretisations and poorly-constrained hydrological processes. MAFIO is a spatially-distributed, process-based model presently designed to simulate the fate and transport of agents representing FIOs shed by livestock at the sub-field scale in small (<10 km) agricultural catchments. Specifically, FIO loading, die-off, detachment, surface routing, seepage and channel routing are modelled on a regular spatial grid.

View Article and Find Full Text PDF

Whole genome sequence (WGS) data could transform our ability to attribute individuals to source populations. However, methods that efficiently mine these data are yet to be developed. We present a minimal multilocus distance (MMD) method which rapidly deals with these large data sets as well as methods for optimally selecting loci.

View Article and Find Full Text PDF

Modern agriculture has dramatically changed the distribution of animal species on Earth. Changes to host ecology have a major impact on the microbiota, potentially increasing the risk of zoonotic pathogens being transmitted to humans, but the impact of intensive livestock production on host-associated bacteria has rarely been studied. Here, we use large isolate collections and comparative genomics techniques, linked to phenotype studies, to understand the timescale and genomic adaptations associated with the proliferation of the most common food-born bacterial pathogen () in the most prolific agricultural mammal (cattle).

View Article and Find Full Text PDF

Foods of plant origin are recognised as a major source of foodborne pathogens, in particular for Shigatoxigenic Escherichia coli (STEC). Most work for STEC and plant-based fresh produce has focused on the most prevalent outbreak serogroup, O157. However, non-O157 STEC is an emerging hazard, and as such it is important to characterise aspects within this group that reflect their ability to colonise alternative hosts and habitats relevant to horticultural production.

View Article and Find Full Text PDF

Background: Campylobacter jejuni is the most common bacterial cause of human infectious intestinal disease.

Methods: We genome sequenced 601 human C. jejuni isolates, obtained from two large prospective studies of infectious intestinal disease (IID1 [isolates from 1993-1996; n = 293] and IID2 [isolates from 2008-2009; n = 93]), the INTEGRATE project [isolates from 2016-2017; n = 52] and the ENIGMA project [isolates from 2017; n = 163].

View Article and Find Full Text PDF

Background is a leading global cause of bacterial gastroenteritis, motivating research to identify sources of human infection. Population genetic studies have been increasingly applied to this end, mainly using multilocus sequence typing (MLST) data.ObjectivesThis review aimed to summarise approaches and findings of these studies and identify best practice lessons for this form of genomic epidemiology.

View Article and Find Full Text PDF

Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000).

View Article and Find Full Text PDF

We examined whole-genome-sequenced Campylobacter jejuni and C. coli from 2012-2015 isolated from birds and human stool samples in North East Scotland for the presence of antimicrobial resistance genes. We found that sequence type (ST) 5136 (clonal complex 464) was the most prevalent multidrug-resistant strain of C.

View Article and Find Full Text PDF

This article reviews modern applications of mathematical descriptions of biofilm formation. The focus is on theoretically obtained results which have implications for areas including the medical sector, food industry and wastewater treatment. Examples are given as to how models have contributed to the overall knowledge on biofilms and how they are used to predict biofilm behaviour.

View Article and Find Full Text PDF

Contamination of fresh produce with pathogenic , including Shiga-toxigenic (STEC), represents a serious risk to human health. Colonization is governed by multiple bacterial and plant factors that can impact the probability and suitability of bacterial growth. Thus, we aimed to determine whether the growth potential of STEC for plants associated with foodborne outbreaks (two leafy vegetables and two sprouted seed species) is predictive of the colonization of living plants, as assessed from growth kinetics and biofilm formation in plant extracts.

View Article and Find Full Text PDF

We present the LiSEQ (Listeria SEQuencing) project, funded by the European Food Safety Agency (EFSA) to compare Listeria monocytogenes isolates collected in the European Union from ready-to-eat foods, compartments along the food chain (e.g. food-producing animals, food-processing environments) and humans.

View Article and Find Full Text PDF

Background: With over 800 million cases globally, campylobacteriosis is a major cause of food borne disease. In temperate climates incidence is highly seasonal but the underlying mechanisms are poorly understood, making human disease control difficult. We hypothesised that observed disease patterns reflect complex interactions between weather, patterns of human risk behaviour, immune status and level of food contamination.

View Article and Find Full Text PDF

Background: Shiga toxin-producing Escherchia coli (STEC) O157:H7 is a zoonotic pathogen that causes numerous food and waterborne disease outbreaks. It is globally distributed, but its origin and the temporal sequence of its geographical spread are unknown.

Methods: We analyzed whole-genome sequencing data of 757 isolates from 4 continents, and performed a pan-genome analysis to identify the core genome and, from this, extracted single-nucleotide polymorphisms.

View Article and Find Full Text PDF

An 11year dataset of concentrations of E. coli at 10 spatially-distributed sites in a mixed land-use catchment in NE Scotland (52km) revealed that concentrations were not clearly associated with flow or season. The lack of a clear flow-concentration relationship may have been due to greater water fluxes from less-contaminated headwaters during high flows diluting downstream concentrations, the importance of persistent point sources of E.

View Article and Find Full Text PDF