Comput Struct Biotechnol J
December 2024
Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder non-specialist users from accessing the pipeline.
View Article and Find Full Text PDFTunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally.
View Article and Find Full Text PDFIn understanding and redesigning the function of proteins in modern biochemistry, protein engineers are increasingly focusing on exploring regions in proteins called loops. Analyzing various characteristics of these regions helps the experts design the transfer of the desired function from one protein to another. This process is denoted as loop grafting.
View Article and Find Full Text PDFEvery year, more than 19 million cancer cases are diagnosed, and this number continues to increase annually. Since standard treatment options have varying success rates for different types of cancer, understanding the biology of an individual's tumour becomes crucial, especially for cases that are difficult to treat. Personalised high-throughput profiling, using next-generation sequencing, allows for a comprehensive examination of biopsy specimens.
View Article and Find Full Text PDFPredictONCO 1.0 is a unique web server that analyzes effects of mutations on proteins frequently altered in various cancer types. The server can assess the impact of mutations on the protein sequential and structural properties and apply a virtual screening to identify potential inhibitors that could be used as a highly individualized therapeutic approach, possibly based on the drug repurposing.
View Article and Find Full Text PDFSummary: Access pathways in enzymes are crucial for the passage of substrates and products of catalysed reactions. The process can be studied by computational means with variable degrees of precision. Our in-house approximative method CaverDock provides a fast and easy way to set up and run ligand binding and unbinding calculations through protein tunnels and channels.
View Article and Find Full Text PDFComput Struct Biotechnol J
November 2022
Protein tunnels are essential in transporting small molecules into the active sites of enzymes. Tunnels' geometrical and physico-chemical properties influence the transport process. The tunnels are attractive hot spots for protein engineering and drug development.
View Article and Find Full Text PDFComput Struct Biotechnol J
November 2022
Protein solubility is an attractive engineering target primarily due to its relation to yields in protein production and manufacturing. Moreover, better knowledge of the mutational effects on protein solubility could connect several serious human diseases with protein aggregation. However, we have limited understanding of the protein structural determinants of solubility, and the available data have mostly been scattered in the literature.
View Article and Find Full Text PDFThe importance of the quantitative description of protein unfolding and aggregation for the rational design of stability or understanding the molecular basis of protein misfolding diseases is well established. Protein thermostability is typically assessed by calorimetric or spectroscopic techniques that monitor different complementary signals during unfolding. The CalFitter webserver has already proved integral to deriving invaluable energy parameters by global data analysis.
View Article and Find Full Text PDFThe transplantation of loops between structurally related proteins is a compelling method to improve the activity, specificity and stability of enzymes. However, despite the interest of loop regions in protein engineering, the available methods of loop-based rational protein design are scarce. One particular difficulty related to loop engineering is the unique dynamism that enables them to exert allosteric control over the catalytic function of enzymes.
View Article and Find Full Text PDFThe development of microbial products for cancer treatment has been in the spotlight in recent years. In order to accelerate the lengthy and expensive drug development process, in silico screening tools are systematically employed, especially during the initial discovery phase. Moreover, considering the steadily increasing number of molecules approved by authorities for commercial use, there is a demand for faster methods to repurpose such drugs.
View Article and Find Full Text PDFProtein evolution and protein engineering techniques are of great interest in basic science and industrial applications such as pharmacology, medicine, or biotechnology. Ancestral sequence reconstruction (ASR) is a powerful technique for probing evolutionary relationships and engineering robust proteins with good thermostability and broad substrate specificity. The following protocol describes the setting up and execution of an automated FireProt workflow using a dedicated web site.
View Article and Find Full Text PDFEnzymes are the natural catalysts that execute biochemical reactions upholding life. Their natural effectiveness has been fine-tuned as a result of millions of years of natural evolution. Such catalytic effectiveness has prompted the use of biocatalysts from multiple sources on different applications, including the industrial production of goods (food and beverages, detergents, textile, and pharmaceutics), environmental protection, and biomedical applications.
View Article and Find Full Text PDFThere is a great interest in increasing proteins' stability to widen their usability in numerous biomedical and biotechnological applications. However, native proteins cannot usually withstand the harsh industrial environment, since they are evolved to function under mild conditions. Ancestral sequence reconstruction is a well-established method for deducing the evolutionary history of genes.
View Article and Find Full Text PDFThe majority of naturally occurring proteins have evolved to function under mild conditions inside the living organisms. One of the critical obstacles for the use of proteins in biotechnological applications is their insufficient stability at elevated temperatures or in the presence of salts. Since experimental screening for stabilizing mutations is typically laborious and expensive, in silico predictors are often used for narrowing down the mutational landscape.
View Article and Find Full Text PDFMillions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Despite genomic databases growing exponentially, classical biochemical characterization techniques are time-demanding, cost-ineffective and low-throughput. Therefore, computational methods are being developed to explore the unmapped sequence space efficiently.
View Article and Find Full Text PDFProtein tunnels and channels are attractive targets for drug design. Drug molecules that block the access of substrates or release of products can be efficient modulators of biological activity. Here, we demonstrate the applicability of a newly developed software tool CaverDock for screening databases of drugs against pharmacologically relevant targets.
View Article and Find Full Text PDFCaver Web 1.0 is a web server for comprehensive analysis of protein tunnels and channels, and study of the ligands' transport through these transport pathways. Caver Web is the first interactive tool allowing both the analyses within a single graphical user interface.
View Article and Find Full Text PDFMotivation: Protein tunnels and channels are key transport pathways that allow ligands to pass between proteins' external and internal environments. These functionally important structural features warrant detailed attention. It is difficult to study the ligand binding and unbinding processes experimentally, while molecular dynamics simulations can be time-consuming and computationally demanding.
View Article and Find Full Text PDFHotSpot Wizard is a web server used for the automated identification of hotspots in semi-rational protein design to give improved protein stability, catalytic activity, substrate specificity and enantioselectivity. Since there are three orders of magnitude fewer protein structures than sequences in bioinformatic databases, the major limitation to the usability of previous versions was the requirement for the protein structure to be a compulsory input for the calculation. HotSpot Wizard 3.
View Article and Find Full Text PDFDespite significant advances in the understanding of protein structure-function relationships, revealing protein folding pathways still poses a challenge due to a limited number of relevant experimental tools. Widely-used experimental techniques, such as calorimetry or spectroscopy, critically depend on a proper data analysis. Currently, there are only separate data analysis tools available for each type of experiment with a limited model selection.
View Article and Find Full Text PDFMotivation: Studying the transport paths of ligands, solvents, or ions in transmembrane proteins and proteins with buried binding sites is fundamental to the understanding of their biological function. A detailed analysis of the structural features influencing the transport paths is also important for engineering proteins for biomedical and biotechnological applications.
Results: CAVER Analyst 2.
The NewProt protein engineering portal is a one-stop-shop for in silico protein engineering. It gives access to a large number of servers that compute a wide variety of protein structure characteristics supporting work on the modification of proteins through the introduction of (multiple) point mutations. The results can be inspected through multiple visualizers.
View Article and Find Full Text PDFThere is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization.
View Article and Find Full Text PDFMetrics for assessing adoption of good development practices are a useful way to ensure that software is sustainable, reusable and functional. Sustainability means that the software used today will be available - and continue to be improved and supported - in the future. We report here an initial set of metrics that measure good practices in software development.
View Article and Find Full Text PDF