Chemical recycling of polyurethane (PU) waste is essential to displace the need for virgin polyol production and enable sustainable PU production. Currently, less than 20% of PU waste is downcycled through rebinding to lower value products than the original PU. Chemical recycling of PU waste often requires significant input of materials like solvents and slow reaction rates.
View Article and Find Full Text PDFThe possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L.
View Article and Find Full Text PDFThe ability to control the bond scission sequence of O-H, C-H, and C-O bonds is of critical importance in the effective utilization of oxygenate molecules, such as in reforming reactions and in alcohol fuel cells. In the current study, we use methanol as a probe molecule to demonstrate the possibility to control the decomposition pathways by supporting monolayer coverage of Pt on a tungsten monocarbide (WC) surface. Density functional theory (DFT) results reveal that on the WC and Pt/WC surfaces CH3OH decomposes via O-H bond scission to form the methoxy (*CH3 O) intermediate.
View Article and Find Full Text PDFAtmospheric spores of ectomycorrhizal (ECM) fungi are a potential source of contamination when mycorrhizal studies are performed in the greenhouse, and techniques for minimizing such contamination have rarely been tested. We grew loblolly pine (Pinus taeda L.) from seed in a greenhouse and inside a high-efficiency particulate air-filtered chamber (HFC) constructed within the same greenhouse.
View Article and Find Full Text PDF