The first coupled operando EPR/UV-Vis/ATR-IR spectroscopy setup for mechanistic studies of gas-liquid phase reactions is presented and exemplarily applied to the well-known copper/TEMPO-catalyzed (TEMPO=(2,2,6,6-tetramethylpiperidin-1-yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and Cu(I) /Cu(II) has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)Cu(II) -O2 (⋅-) -TEMPO (bpy=2,2'-bipyridine, NMI=N-methylimidazole) intermediate formed by electron transfer from Cu(I) to molecular O2 .
View Article and Find Full Text PDFIn order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i) ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii) the main characteristics of the generalized isotope effects are worked out, and finally (iii) the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations.
View Article and Find Full Text PDFFe(III) compounds FeCl3 and FeCl4(-) have been used as ESR spin probes in ionic liquids (ILs) at 293 and 77 K for the first time. They showed characteristic spectral patterns, which could be separated from each other by simulation. The largest contribution originates from aggregated FeCl4(-) and other exchange coupled species at g' ≈ 2.
View Article and Find Full Text PDFThermally reversible photochromic spiro-acridans have been synthesized for the first time. They exhibit high ring opening efficiencies. As the formed zwitterions do not possess a merocyanine structure their lifetime is in the range of milliseconds to seconds.
View Article and Find Full Text PDFDissolved organic matter (DOM) has been shown to affect phytoplankton species directly. These interactions largely depend on the origin and molecular size of DOM and are different in prokaryotes and eukaryotes. In a preceding study, however, two humic substance preparations did not adversely affect coccal green algae or cyanobacterial growth even at high concentrations of dissolved organic carbon (DOC).
View Article and Find Full Text PDFBy means of continuous wave electron spin resonance (cw ESR) in the X and L bands, the spin exchange of series of different concentrations of the spin probes 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and 4-(trimethylamino)-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT-1) in H(2)O and D(2)O have been examined. The rate constants k(e) of the spin exchange have been determined by complete spectra simulations, as well as directly from hyperfine line broadenings and concentration depending line shifts. The obtained results showed a good agreement.
View Article and Find Full Text PDFWe have developed a noncontact method to probe the electrical conductivity and complex permittivity of single and polycrystalline samples in a flow-through reactor in the temperature range of 20-500 °C and in various gas atmospheres. The method is based on the microwave cavity perturbation technique and allows the simultaneous measurement of microwave conductivity, permittivity and of the catalytic performance of heterogeneous catalysts without any need for contacting the sample with electrodes. The sensitivity of the method towards changes in bulk properties was proven by the investigation of characteristic first-order phase transitions of the ionic conductor rubidium nitrate in the temperature range between 20 and 320 °C, and by studying the temperature dependence of the complex permittivity and conductivity of a niobium(V)-doped vanadium-phosphorous-oxide catalyst for the selective oxidation of n-butane to maleic anhydride.
View Article and Find Full Text PDFDissolved humic substances are taken up by organisms and interact on various molecular and biochemical levels. In the nematode Caenorhabditis elegans, such material can promote longevity and increase its reproductive capacity; moreover, the worms tend to stay for longer in humic-enriched environments. Here, we tested the hypothesis that the chemical enrichment of humic substances with hydroxybenzene moieties intensifies these physiological effects.
View Article and Find Full Text PDFA series of complexes of the type [(Tp(R1,R2))M(X)] (Tp = trispyrazolylborato) with R(1)/R(2) combinations Me/tBu, Ph/Me, iPr/iPr, Me/Me and for M = Mn or Fe coordinating [Pz(Me,tBu)](-) (Pz = pyrazolato) or Cl(-) as co-ligand X has been synthesised. Although the chloride complexes were very unreactive and stable in air, the pyrazolato series was far more reactive in contact with oxidants like O(2) and tBuOOH. The [(Tp(R1,R2))M(Pz(Me,tBu))] complexes proved to be active pre-catalysts for the oxidation of cyclohexene with tBuOOH, reaching turnover frequencies (TOFs) ranging between moderate and good in comparison to other manganese catalysts.
View Article and Find Full Text PDFElectron spin resonance spectroscopy and mass spectrometry are two analytical methods that are very rarely used in combination. In this paper, we will show that the methods complement one another in the example of the distribution of stable nitroxide radicals in human skin, including the spatial resolution of these distribution processes. There are many ESR investigations dealing with this subject, but unfortunately, they are all limited to the detection of paramagnetic species.
View Article and Find Full Text PDFComprehensive examinations of the motional properties (rotational correlation time τ(R)) and the spin exchange ω(SS) of the spin probe TEMPOL have been carried out using ESR spectroscopy in two different solvents. For the first time, the dynamic parameters τ(R) and ω(SS) have been determined simultaneously by simulation of spectra measured at three different ESR frequencies (L-, X-, and Q-band) between 293 and 500 K using a dynamic model based on a stochastic fitting program and, for comparison, two alternative models involving the shift of the hyperfine lines and considering the line broadening due to spin exchange in a wide range of conditions. Possibilities and limits of the used models are shown upon comparing the obtained results of the spin exchange.
View Article and Find Full Text PDFAn investigation concerning the stepwise reduction of the β-diketiminato nickel(II) hydride dimer [LNi(μ-H)(2)NiL], 1 (L = [HC(CMeNC(6)H(3)(iPr)(2))(2)](-)), has been carried out. While the reaction with one equivalent of potassium graphite, KC(8), led to the mixed valent Ni(I)/Ni(II) complex K[LNi(μ-H)(2)NiL], 3, treatment of 1 with two equivalents of KC(8) surprisingly yielded in the trinuclear complex K(2)[LNi(μ-H)(2)Ni(μ-H)(2)NiL], 4, in good yields. The Ni(3)H(4) core contains one Ni(II) and two Ni(I) centers, which are antiferromagnetically coupled so that a singlet ground state results.
View Article and Find Full Text PDFFor the first time, heterogeneous catalytic reactions have been monitored by in situ EPR spectroscopy in the Q-band using a homemade heatable probe head equipped with a flow reactor. The reactions of Al(2)O(3)-supported TEMPO with NO and H(2) as well as of SiO(2)/Al(2)O(3)-supported H(4)PVMo(11)O(40) with methanol and formaldehyde were studied up to 400 degrees C. TEMPO radicals are immobilized on the support in positions which impose a different reactivity to NO and H(2).
View Article and Find Full Text PDFIn the context of a potential modeling of reduced oxovanadium species occurring on the surfaces of silica-supported vanadia catalysts in the course of its turnover, the incompletely condensed silsesquioxane H(3)(c-pentyl)T(7) was reacted with Cl(4)V(THF)(2) (where THF = tetrahydrofuran) in the presence of triethylamine. Precipitation of 3 equiv of HNEt(3)Cl seemed to point to the clean formation of [((c-pentyl)T(7))(V(IV)Cl)] (1), which was supported by electron paramagnetic resonance studies performed for the resulting solutions, but further analytical and spectroscopic investigations showed that the processes occurring at that stage are more complex than that and even include the formation of [((c-pentyl)T(7))(V(V)O)](2) as a side product. Storage of a red-brown hexane solution of this product mixture reproducibly led to the precipitation of blue crystals belonging to the chloride-free compound [((c-pentyl)T(7))(2)(V(IV)=O)(3)(THF)(2)] (2), as revealed by single-crystal X-ray diffraction.
View Article and Find Full Text PDFElectron by electron: Beta-diketiminato nickel(I) complex fragments are capable of activating N(2) through coordination. The resulting complex can be reduced in two single-electron steps, which further activates the N-N bond. The picture shows the structure of the singly reduced complex with mu-eta(1):eta(1)-bound N(2).
View Article and Find Full Text PDFA new and simple preparation method for fluoride-templated tetranuclear vanadium phosphonate cage compounds, M(n+)[(V2O3)2(RPO3)4
We report the chemistry and photophysics of atomic gold and silver particles in inorganic glasses. By synchrotron irradiation of gold-doped soda-lime silicate glasses we could create and identify unambiguously the gold dimer as a stable and bright luminescing particle embedded in the glassy matrix. The gold dimer spectra coincide perfectly with rare gas matrix spectra of Au(2).
View Article and Find Full Text PDFThe noninvasive method of spectral-spatial electron spin resonance imaging (ESRI) was used to obtain a polarity map of human skin. The spin probes TEMPO, TEMPOL, and CAT-1, which are considered to act as drug representatives, were applied as reporter molecules. The polarity in skin layers was described by means of the changes of the hyperfine splitting constant A(iso), which itself is a reflection of interactions at a molecular level, and the effect of polarity on the spatial distribution of spin probes in skin samples was studied.
View Article and Find Full Text PDFThe possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants.
View Article and Find Full Text PDFDissolved natural organic matter (NOM) plays an essential role in freshwater geochemical and biochemical processes. A major property, its redox behavior, can be attributed to the chinone building blocks, which can form stable radicals. However, electron paramagnetic resonance (EPR) data indicating free radicals on solid NOM are sparse.
View Article and Find Full Text PDFPurpose: An innovative, noninvasive, low-frequency electron spin resonance (ESR) spectroscopy method was applied and adapted to investigate the integrity of multilamellar liposomes from hydrogenated phospholipids after subcutaneous injection in living mice. Moreover, the fate of the injected liposomal preparations was examined, as well as the possibility to achieve a depot effect.
Methods: Highly concentrated solutions of the spin probe 2,2,6,6-tetramethyl-4-trimethylammoniumpiperidine-1-oxyl-iodide (CAT-1; 138 mM) were encapsulated in liposomes.
The structure of the very strong solid Lewis acid aluminum chlorofluoride (ACF, AlCl(x)F(3-x), x = 0.05-0.3) was studied by IR, ESR, Cl K XANES, (19)F MAS NMR, and (27)Al SATRAS NMR spectroscopic methods and compared with amorphous aluminum fluoride conventionally prepared by dehydration of alpha-AlF(3) x 3H(2)O.
View Article and Find Full Text PDFPurpose: The possibilities of the noninvasive examination of microacidity (5) in different depths of the skin in vitro was explored, and the impact of drug treatment on the pH inside the skin was studied.
Methods: Spectral-spatial electron spin resonance imaging (ss-ESRI) and pH-sensitive nitroxides were used to obtain a pH map of rat and human skin in vitro.
Results: The dermal application of therapeutically used acids, such as salicylic acid and azelaic acid, caused a plain change of microacidity (pH) inside the skin.