Publications by authors named "Stormy Koeniger"

Article Synopsis
  • The study addresses the challenge of ensuring consistency in metabolomics measurements across different laboratories by using a standardized protocol with the Biocrates AbsoluteIDQ p400HR kit to analyze various blood specimens.
  • Approximately 250 metabolites were reliably quantified using Orbitrap instruments, revealing varying interlaboratory variance across different metabolite classes, with a median bias of <50% from reference values for nearly 80% of analytes tested.
  • The authors recommend best practices for quality control, system suitability, and calibration, highlighting that with proper controls, high-resolution metabolomics can produce accurate and comparable results across labs.
View Article and Find Full Text PDF

Phenotypic screening provides compounds with very limited target cellular localization data. In order to select the most appropriate target identification methods, determining if a compound acts at the cell-surface or intracellularly can be very valuable. In addition, controlling cell-permeability of targeted therapeutics such as antibody-drug conjugates (ADCs) and targeted nanoparticle formulations can reduce toxicity from extracellular release of drug in undesired tissues or direct activity in bystander cells.

View Article and Find Full Text PDF

Cancer cells are highly reliant on NAD-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme.

View Article and Find Full Text PDF

The rapid and direct analysis of the amount and spatial distribution of exogenous chloroquine (CHQ) and CHQ metabolites from tissue sections by liquid extraction surface sampling analysis coupled with tandem mass spectrometry (LESA-MS/MS) was demonstrated. LESA-MS/MS results compared well with previously published CHQ quantification data collected by organ excision, extraction and fluorescent detection. The ability to directly sample and analyze spatially resolved exogenous molecules from tissue sections with minimal sample preparation and analytical method development has the potential to facilitate the assessment of target tissue penetration of pharmaceutical compounds, to establish pharmacokinetic/pharmacodynamic relationships, and to complement established pharmacokinetic methods used in the drug discovery process during tissue distribution assessment.

View Article and Find Full Text PDF

A new quantitation method for mass spectrometry imaging (MSI) with matrix-assisted laser desorption/ionization (MALDI) has been developed. In this method, drug concentrations were determined by tissue homogenization of five 10 µm tissue sections adjacent to those analyzed by MSI. Drug levels in tissue extracts were measured by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS).

View Article and Find Full Text PDF

Although nonnative protein conformations, including intermediates along the folding pathway and kinetically trapped misfolded species that disfavor the native state, are rarely isolated in the solution phase, they are often stable in the gas phase, where macromolecular ions from electrospray ionization can exist in varying charge states. Differences in the structures of nonnative conformations in the gas phase are often large enough to allow different shapes and charge states to be separated because of differences in their mobilities through a gas. Moreover, gentle collisional activation can be used to induce structural transformations.

View Article and Find Full Text PDF

A simple method for increasing the efficiency of multidimensional ion mobility spectrometry (IMS-IMS) measurements (as defined by the number of two-dimensional data sets necessary to sample all of the ions in a complex mixture) is illustrated. In this approach, components from a packet containing a mixture of ions are introduced into the first IMS drift region where they are separated based on differences in mobility. At the exit of this region, narrow distributions of ions having identical mobilities are selected, subjected to gentle activation conditions that are intended to induce conformational changes, and transmitted into a second IMS drift region where the new conformations are separated.

View Article and Find Full Text PDF

Two-dimensional ion mobility spectrometry (IMS-IMS) coupled with mass spectrometry is examined as a means of separating mixtures of tryptic peptides (from myoglobin and hemoglobin). In this study, we utilize two distinct drift regions that are identical in that each contains He buffer gas at 300 K. The two-dimensional advantage is realized by changing the structures of the ions.

View Article and Find Full Text PDF

Here we show experimental evidence for the spontaneous chiral resolution of icosahedral [12Pro+H]+ cluster ion. Molecular simulations reveal that the icosahedron consists of 12 equally spaced prolines where the rigid pyrrolidine ring of each monomer is sticking out of the closed cage. The tightly packed chiral cage traps a single proton in the center cavity.

View Article and Find Full Text PDF

Electrospray ionization, combined with two-dimensional ion mobility spectrometry and mass spectrometry, is used to produce, select, and activate distributions of elongated ions, [M + 11H]11+ to [M + 13H]13+, of ubiquitin. The analysis makes it possible to examine state-to-state transitions for structural types, and transition diagrams associated with the efficiencies of structural changes are presented. The +11 and +12 charge states can form four resolvable states while only one state is formed for [M + 13H]13+.

View Article and Find Full Text PDF

Multidimensional ion mobility spectrometry techniques (IMS-IMS and IMS-IMS-IMS) combined with mass spectrometry are used to study structural transitions of ubiquitin ions in the gas phase. It is possible to select and activate narrow distributions of compact and partially folded conformation types and examine new distributions of structures that are formed. Different compact conformations unfold, producing a range of new partially folded states and three resolvable peaks associated with elongated conformers.

View Article and Find Full Text PDF

Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e.

View Article and Find Full Text PDF

A combination of split-field drift tube/mass spectrometry and isotopic labeling techniques is evaluated as a means of identifying single amino acid polymorphisms (SAAPs) in proteins. The method is demonstrated using cytochromec (equine and bovine) and hemoglobin (bovine and sheep). For these studies, proteins from different species are digested with trypsin, and the peptides are labeled at primary amine groups [using either a light (H(3))- or heavy (D(3))-isotopic reagent].

View Article and Find Full Text PDF

The development of a new ion mobility/mass spectrometry instrument that incorporates a multifield drift tube/ion funnel design is described. In this instrument, individual components from a mixture of ions can be resolved and selected on the basis of mobility differences prior to collisional activation inside the drift tube. The fragment ions that are produced can be dispersed again in a second ion mobility spectrometry (IMS) region prior to additional collisional activation and MS analysis.

View Article and Find Full Text PDF

Multidimensional ion mobility spectrometry (IMS-IMS and IMS-IMS-IMS) techniques have been combined with mass spectrometry (MS) and investigated as a means of generating and separating peptide and protein fragment ions. When fragments are generated inside a drift tube and then dispersed by IMS prior to MS analysis, it is possible to observe many features that are not apparent from MS analysis alone. The approach is demonstrated by examining fragmentation patterns arising from electrospray ion distributions of insulin chain B and ubiquitin.

View Article and Find Full Text PDF

A new two-dimensional ion mobility spectrometry approach combined with mass spectrometry has been used to examine ubiquitin ions in the gas phase. In this approach ions are separated in an initial drift tube into conformation types (defined by their collision cross sections) and then a gate is used to introduce a narrow distribution of mobility-separated ions into a second drift tube for subsequent separation. The results show that upon selection a narrow peak shape is retained through the second drift tube.

View Article and Find Full Text PDF

When a packet of ions in a buffer gas is exposed to a weak electric field, the ions will separate according to differences in their mobilities through the gas. This separation forms the basis of the analytical method known as ion mobility spectroscopy and is highly efficient, in that it can be carried out in a very short time frame (micro- to milliseconds). Recently, efforts have been made to couple the approach with liquid-phase separations and mass spectrometry in order to create a high-throughput and high-coverage approach for analyzing complex mixtures.

View Article and Find Full Text PDF

The proteomes of three heads of individual Drosophila melanogaster organisms have been analyzed and compared by a combination of liquid chromatography, ion mobility spectrometry, and mass spectrometry approaches. In total, 197 proteins are identified among all three individuals (an average of 120 +/- 20 proteins per individual), of which at least 101 proteins are present in all three individuals. Within all three datasets, more than 25 000 molecular ions (an average of 9000 +/- 2000 per individual) corresponding to protonated precursor ions of individual peptides have been observed.

View Article and Find Full Text PDF

Multidimensional separations combined with mass spectrometry are used to study the proteins that are present in two states of Drosophila melanogaster: the whole embryo and the adult head. The approach includes the incorporation of a gas-phase separation dimension in which ions are dispersed according to differences in their mobilities and is described as a means of providing a detailed analytical map of the proteins that are present. Overall, we find evidence for 1133 unique proteins.

View Article and Find Full Text PDF

A field modulation approach for high-throughput ion mobility/time-of-flight analyses of complex mixtures has been developed using a split-field drift tube. In this approach, complex mixtures of peptides, such as those that arise from tryptic digestion of protein mixtures, are separated by nanocolumn liquid chromatography, ionized by electrospray ionization, and analyzed by ion mobility/time-of-flight techniques. The split-field drift tube allows parent ions to be separated based on differences in their low-field mobilities through the first-field region before entering the second region.

View Article and Find Full Text PDF

A simple ion trap/ion mobility/time-of-flight (TOF) mass spectrometer has been coupled with nanoflow liquid chromatography to examine the feasibility of analyzing mixtures of intact proteins. In this approach proteins are separated using reversed-phase chromatography. As components elute from the column, they are electrosprayed into the gas phase and separated again in a drift tube prior to being dispersed and analyzed in a TOF mass spectrometer.

View Article and Find Full Text PDF

A linear octopole trap interface for an ion mobility time-of-flight mass spectrometer has been developed for focusing and accumulating continuous beams of ions produced by electrospray ionization. The interface improves experimental efficiencies by factors of approximately 50-200 compared with an analogous configuration that utilizes a three-dimensional Paul geometry trap (Hoaglund-Hyzer, C. S.

View Article and Find Full Text PDF

A new ion mobility instrument that incorporates a low-field region for ion separation and a high-field region for collisional activation is described. In this approach, mixtures of ions are separated based on differences in their mobilities in a approximately 20-cm-long low-field ( approximately 5 V cm(-)(1)) region of a drift tube. As the ions approach the drift tube exit, they are exposed to a large focusing potential drop; at high fields, ions are efficiently collisionally activated and dissociate as they exit the drift tube.

View Article and Find Full Text PDF