The mossy fiber pathway of the hippocampal formation and type 1 adenylyl cyclase (AC1) have been implicated in long-term potentiation and memory function. Using immunohistochemical labeling and light microscopy we demonstrated intense labeling of AC1 in the mossy fibers and less intense labeling in the molecular layers of both the dentate gyrus and fields CA1, CA2 and CA3 of the hippocampus, i.e.
View Article and Find Full Text PDFCyclic nucleotide-gated ion channels in olfactory sensory neurons (OSNs) are hypothesized to play a critical role in olfaction. However, it has not been demonstrated that the cAMP signaling is required for olfactory-based behavioral responses, and the contributions of specific adenylyl cyclases to olfaction have not been defined. Here, we report the presence of adenylyl cyclases 2, 3, and 4 in olfactory cilia.
View Article and Find Full Text PDFOlfactory sensory neurons (OSNs) respond acutely to volatile molecules and exhibit adaptive responses including desensitization to odorant exposure. Although mechanisms for short term adaptation have been described, there is little evidence that odorants cause long lasting, transcription-dependent changes in OSNs. Here we report that odorants stimulate cAMP-response element (CRE)-mediated transcription in OSNs through Ca2+ activation of the ERK/MAPK/p90rsk pathway.
View Article and Find Full Text PDFRecent evidence indicates that phosphatidylinositol 3-kinase (PI3K) is a central regulator of mitosis, apoptosis and oncogenesis. Nevertheless, the mechanisms by which PI3K regulates proliferation are not well characterized. Mitogens stimulate entry into the cell cycle by inducing the expression of immediate early genes (IEGs) that in turn trigger the expression of G(1) cyclins.
View Article and Find Full Text PDFStress results in alterations in behavior and physiology that can be either adaptive or maladaptive. To define the molecular pathways involved in the response to stress further, we generated mice deficient (KO) in the calcium-stimulated adenylyl cyclase type VIII (AC8) by homologous recombination in embryonic stem cells. AC8 KO mice demonstrate a compromise in calcium-stimulated AC activity in the hippocampus, hypothalamus, thalamus, and brainstem.
View Article and Find Full Text PDFGene transcription is thought to be essential for memory consolidation and long-lasting changes in synaptic function. In particular, the signal transduction pathways that activate the transcription factor cAMP response element binding protein (CREB) have been implicated in the process of synaptic potentiation. To study the involvement of this pathway in neocortical plasticity within the barrel cortex, we have used a strain of mice carrying a LacZ reporter gene with six cAMP response elements (CREs) upstream of a minimal promoter.
View Article and Find Full Text PDFRegulation of gene transcription via the cAMP-mediated second messenger pathway has been implicated in the actions of antidepressant drugs, but studies to date have not demonstrated such an effect in vivo. To directly study the regulation of cAMP response element (CRE)-mediated gene transcription by antidepressants, transgenic mice with a CRE-LacZ reporter gene construct were administered one of three different classes of antidepressants: a norepinephrine selective reuptake inhibitor (desipramine), a serotonin selective reuptake inhibitor (fluoxetine), or a monoamine oxidase inhibitor (tranylcypromine). Chronic, but not acute, administration of these antidepressants significantly increased CRE-mediated gene transcription, as well as the phosphorylation of CRE binding protein (CREB), in several limbic brain regions thought to mediate the action of antidepressants, including the cerebral cortex, hippocampus, amygdala, and hypothalamus.
View Article and Find Full Text PDFCapacitative Ca(2+) entry stimulates cAMP synthesis in mouse parotid acini, suggesting that one of the Ca(2+)-sensitive adenylyl cyclases (AC1 or AC8) may play an important role in the regulation of parotid function (Watson, E. L., Wu, Z.
View Article and Find Full Text PDFTo define the physiological role of IP(3)3-kinase(A) in vivo, we have generated a mouse strain with a null mutation of the IP(3)3-kinase(A) locus by gene targeting. Homozygous mutant mice were fully viable, fertile, apparently normal, and did not show any morphological anomaly in brain sections. In the mutant brain, the IP4 level was significantly decreased whereas the IP3 level did not change, demonstrating a major role of IP(3)3-kinase(A) in the generation of IP4.
View Article and Find Full Text PDFA program of stringently-regulated gene expression is thought to be a fundamental component of the circadian clock. Although recent work has implicated a role for E-box-dependent transcription in circadian rhythmicity, the contribution of other enhancer elements has yet to be assessed. Here, we report that cells of the suprachiasmatic nuclei (SCN) exhibit a prominent circadian oscillation in cAMP response element (CRE)-mediated gene expression.
View Article and Find Full Text PDFNeurotransmitter release at many central synapses is initiated by an influx of calcium ions through P/Q-type calcium channels, which are densely localized in nerve terminals. Because neurotransmitter release is proportional to the fourth power of calcium concentration, regulation of its entry can profoundly influence neurotransmission. N- and P/Q-type calcium channels are inhibited by G proteins, and recent evidence indicates feedback regulation of P/Q-type channels by calcium.
View Article and Find Full Text PDFAlthough the circadian time-keeping properties of the suprachiasmatic nuclei (SCN) require gene expression, little is known about the signal transduction pathways that initiate transcription. Here we report that a brief exposure to light during the subjective night, but not during the subjective day, activates the p44/42 mitogen-activated protein kinase (MAPK) signaling cascade in the SCN. In addition, MAPK stimulation activates CREB (cAMP response element binding protein), indicating that potential downstream transcription factors are stimulated by the MAPK pathway in the SCN.
View Article and Find Full Text PDFRecent studies suggest that the CREB-CRE transcriptional pathway is pivotal in the formation of some types of long-term memory. However, it has not been demonstrated that stimuli that induce learning and memory activate CRE-mediated gene expression. To address this issue, we used a mouse strain transgenic for a CRE-lac Z reporter to examine the effects of hippocampus-dependent learning on CRE-mediated gene expression in the brain.
View Article and Find Full Text PDFNeurogranin is a neural-specific, calmodulin (CaM)-binding protein that is phosphorylated by protein kinase C (PKC) within its IQ domain at serine 36. Since CaM binds to neurogranin through the IQ domain, PKC phosphorylation and CaM binding are mutually exclusive. Consequently, we hypothesize that neurogranin may function to concentrate CaM at specific sites in neurons and release free CaM in response to increased Ca2+ and PKC activation.
View Article and Find Full Text PDFNeuronal activity-dependent processes are believed to mediate the formation of synaptic connections during neocortical development, but the underlying intracellular mechanisms are not known. In the visual system, altering the pattern of visually driven neuronal activity by monocular deprivation induces cortical synaptic rearrangement during a postnatal developmental window, the critical period. Here, using transgenic mice carrying a CRE-lacZ reporter, we demonstrate that a calcium- and cAMP-regulated signaling pathway is activated following monocular deprivation.
View Article and Find Full Text PDFMembers of the cholera toxin family, including Escherichia coli heat-labile enterotoxins LT-I and LT-II, catalyze the covalent modification of intracellular proteins by transfer of ADP-ribose from NAD to a specific arginine of the target protein. The ADP-ribosylating activity of these toxins is located in the A-subunit, for which LT-I and LT-II share a 63% sequence identity. The flexible loop in LT-I, ranging from residue 47 to 56, closes over the active site cleft.
View Article and Find Full Text PDFSpecific forms of synaptic plasticity such as long-term potentiation (LTP) are modulated by or require increases in cAMP. The various adenylyl cyclase isoforms possess unique regulatory properties, and thus cAMP increases in a given cell type or tissue in response to converging signals are subject to the properties of the adenylyl cyclase isoforms expressed. In most tissues, adenylyl cyclase activity is stimulated by neurotransmitters or hormones via stimulatory G-protein (Gs)-coupled receptors and is inhibited via inhibitory G-protein (Gi)-linked receptors.
View Article and Find Full Text PDFElderly women are at increased risk for bone loss and fractures. In previous cross-sectional and longitudinal studies of women residing in northern latitudes, bone loss was most pronounced during winter months and in those consuming less than 1 g calcium per day. In this study we sought to test the hypothesis that calcium supplementation by either calcium carbonate or dietary means would prevent seasonal bone loss and preserve bone mass.
View Article and Find Full Text PDFAlthough Ca2+-stimulated cAMP response element binding protein- (CREB-) dependent transcription has been implicated in growth, differentiation, and neuroplasticity, mechanisms for Ca2+-activated transcription have not been defined. Here, we report that extracellular signal-related protein kinase (ERK) signaling is obligatory for Ca2+-stimulated transcription in PC12 cells and hippocampal neurons. The sequential activation of ERK and Rsk2 by Ca2+ leads to the phosphorylation and transactivation of CREB.
View Article and Find Full Text PDFWe compared calcaneal ultrasound measurements (speed of sound [SOS], broadband ultrasound attenuation [BUA], and stiffness index [SI]) of lesbian and heterosexual women to examine the medical and lifestyle risk factors for osteoporosis in each group. This was an exploratory, community-based, cross-sectional study. Subjects were mailed food frequency, health, and physical activity questionnaires.
View Article and Find Full Text PDFAcute desensitization of olfactory signaling is a critical property of the olfactory system that allows animals to detect and respond to odorants. Correspondingly, an important feature of odorant-stimulated cAMP increases is their transient nature, a phenomenon that may be attributable to the unique regulatory properties of the olfactory adenylyl cyclase (AC3). AC3 is stimulated by receptor activation and inhibited by Ca2+ through Ca2+/calmodulin kinase II (CaMKII) phosphorylation at Ser-1076.
View Article and Find Full Text PDFThe somatosensory (SI) cortex of mice displays a patterned, nonuniform distribution of neurons in layer IV called the 'barrelfield' (ref. 1). Thalamocortical afferents (TCAs) that terminate in layer IV are segregated such that each barrel, a readily visible cylindrical array of neurons surrounding a cell-sparse center, represents a distinct receptive field.
View Article and Find Full Text PDFActivation of adenylyl cyclase and the consequent production of cAMP is a process that has been shown to be central to invertebrate model systems of information storage. In the vertebrate brain, it has been suggested that a presynaptic cascade involving Ca influx, cAMP production, and subsequent activation of cAMP-dependent protein kinase is necessary for induction of long-term potentiation (LTP) at the cerebellar parallel fiber-Purkinje cell synapse. We have used mutant mice in which the major Ca-sensitive adenylyl cyclase isoform of cerebellar cortex (type I) is deleted to show that this results in an approximately 65% reduction in cerebellar Ca-sensitive cyclase activity and a nearly complete blockade of cerebellar LTP assessed using granule cell-Purkinje cell pairs in culture.
View Article and Find Full Text PDF