Photosystem I in most organisms contains long-wavelength or "Red" chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer to the oxidized RC (P700), which has broad absorption in the near-infrared region.
View Article and Find Full Text PDFTarget analysis is employed to resolve the ground and excited state properties from simultaneously measured Femtosecond Stimulated Raman Spectra (FSRS) and Transient Absorption Spectra (TAS). FSRS is a three-pulse technique, involving picosecond Raman pump pulses and femtosecond visible pump and probe pulses. The TAS are needed to precisely estimate the properties of the Instrument Response Function.
View Article and Find Full Text PDFCyanobacteria were the first microorganisms that released oxygen into the atmosphere billions of years ago. To do it safely under intense sunlight, they developed strategies that prevent photooxidation in the photosynthetic membrane, by regulating the light-harvesting activity of their antenna complexes-the phycobilisomes-via the orange-carotenoid protein (OCP). This water-soluble protein interacts with the phycobilisomes and triggers nonphotochemical quenching (NPQ), a mechanism that safely dissipates overexcitation in the membrane.
View Article and Find Full Text PDFIn this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP.
View Article and Find Full Text PDFChlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis.
View Article and Find Full Text PDFBestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11- RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11 and 13- RSB directly formed from the excited state in 1.
View Article and Find Full Text PDFThe phycobilisomes function as the primary light-harvesting antennae in cyanobacteria and red algae, effectively harvesting and transferring excitation energy to both photosystems. Here we investigate the direct energy transfer route from the phycobilisomes to photosystem I at room temperature in a mutant of the cyanobacterium sp. PCC 6803 that lacks photosystem II.
View Article and Find Full Text PDFPhycobilisomes serve as a light-harvesting antenna of both photosystem I (PSI) and II (PSII) in cyanobacteria, yet direct energy transfer from phycobilisomes to PSI is not well documented. Here we recorded picosecond time-resolved fluorescence at wavelengths of 605-760 nm in isolated photosystem I (PSI), phycobilisomes and intact cells of a PSII-deficient mutant of sp. PCC 6803 at 77 K to study excitation energy transfer and trapping.
View Article and Find Full Text PDFWe establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl , two Red Chl , and a reaction center compartment (WL-RC).
View Article and Find Full Text PDFThe dynamics of molecular systems can be studied with time-resolved spectroscopy combined with model-based analysis. A Python framework for global and target analysis of time-resolved spectra is introduced with the help of three case studies. The first study, concerning broadband absorption of intersystem crossing in 4-thiothymidine, demonstrates the framework's ability to resolve vibrational wavepackets with a time resolution of ≈10 fs using damped oscillations and their associated spectra and phases.
View Article and Find Full Text PDFChrimson is a red-light absorbing channelrhodopsin useful for deep-tissue optogenetics applications. Here, we present the Chrimson reaction dynamics from femtoseconds to seconds, analyzed with target analysis methods to disentangle spectrally and temporally overlapping excited- and product-state dynamics. We found multiple phases ranging from ≈100 fs to ≈20 ps in the excited-state decay, where spectral features overlapping with stimulated emission components were assigned to early dynamics of K-like species on a 10 ps time scale.
View Article and Find Full Text PDFThionated nucleobases are obtained by replacing oxygen with sulphur atoms in the canonical nucleobases. They absorb light efficiently in the near-ultraviolet, populating singlet states which undergo intersystem crossing to the triplet manifold on an ultrashort time scale with a high quantum yield. Nonetheless there are still important open questions about the primary mechanisms responsible for this ultrafast transition.
View Article and Find Full Text PDFPhotosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions.
View Article and Find Full Text PDFWe present a methodology that provides a complete parametric description of the time evolution of the electronically and vibrationally excited states as detected by ultrafast transient absorption (TA). Differently from previous approaches, which started fitting the data after ≈100 fs, no data are left out in our methodology, and the "coherent artifact" and the instrument response function are fully taken into account. In case studies, the method is applied to solvents, the dye Nile blue, and all-trans β-carotene in cyclohexane solution.
View Article and Find Full Text PDFBroad-band pump-probe spectroscopy combined with global and target analysis is employed to study the vibronic and excitonic dynamics of two dimers and a tetramer of perylenediimides. A simultaneous analysis is developed for two systems that have been measured in the same conditions. This enhances the resolvability of the vibronic and excitonic dynamics of the systems, and the solvent contributions that are common in the experiments.
View Article and Find Full Text PDFPhotosynthesis in plants starts with the capture of photons by light-harvesting complexes (LHCs). Structural biology and spectroscopy approaches have led to a map of the architecture and energy transfer pathways between LHC pigments. Still, controversies remain regarding the role of specific carotenoids in light-harvesting and photoprotection, obligating the need for high-resolution techniques capable of identifying excited-state signatures and molecular identities of the various pigments in photosynthetic systems.
View Article and Find Full Text PDFFemtosecond time-resolved crystallography (TRC) on proteins enables resolving the spatial structure of short-lived photocycle intermediates. An open question is whether confinement and lower hydration of the proteins in the crystalline state affect the light-induced structural transformations. Here, we measured the full photocycle dynamics of a signal transduction protein often used as model system in TRC, Photoactive Yellow Protein (PYP), in the crystalline state and compared those to the dynamics in solution, utilizing electronic and vibrational transient absorption measurements from 100 fs over 12 decades in time.
View Article and Find Full Text PDFThe heterologous expression of the far-red absorbing chlorophyll (Chl) f in organisms that do not synthesize this pigment has been suggested as a viable solution to expand the solar spectrum that drives oxygenic photosynthesis. In this study, we investigate the functional binding of Chl f to the Photosystem I (PSI) of the cyanobacterium Synechococcus 7002, which has been engineered to express the Chl f synthase gene. By optimizing growth light conditions, one-to-four Chl f pigments were found in the complexes.
View Article and Find Full Text PDFThe phycobilisome (PBS) serves as the major light-harvesting system, funnelling excitation energy to both photosystems (PS) in cyanobacteria and red algae. The picosecond kinetics involving the excitation energy transfer has been studied within the isolated systems and intact filaments of the cyanobacterium Anabaena variabilis PCC 7120. A target model is proposed which resolves the dynamics of the different chromophore groups.
View Article and Find Full Text PDFExcitation energy transfer (EET) and trapping in Anabaena variabilis (PCC 7120) intact cells, isolated phycobilisomes (PBS) and photosystem I (PSI) complexes have been studied by picosecond time-resolved fluorescence spectroscopy at room temperature. Global analysis of the time-resolved fluorescence kinetics revealed two lifetimes of spectral equilibration in the isolated PBS, 30-35 ps and 110-130 ps, assigned primarily to energy transfer within the rods and between the rods and the allophycocyanin core, respectively. An additional intrinsic kinetic component with a lifetime of 500-700 ps was found, representing non-radiative decay or energy transfer in the core.
View Article and Find Full Text PDFPhotoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Sunlight drives photosynthesis but can also cause photodamage. To protect themselves, photosynthetic organisms dissipate the excess absorbed energy as heat, in a process known as nonphotochemical quenching (NPQ). In green algae, diatoms, and mosses, NPQ depends on the light-harvesting complex stress-related (LHCSR) proteins.
View Article and Find Full Text PDFThe orange carotenoid protein (OCP) is a two-domain photoactive protein that noncovalently binds an echinenone (ECN) carotenoid and mediates photoprotection in cyanobacteria. In the dark, OCP assumes an orange, inactive state known as OCP; blue light illumination results in the red active state, known as OCP. The OCP state is characterized by large-scale structural changes that involve dissociation and separation of C-terminal and N-terminal domains accompanied by carotenoid translocation into the N-terminal domain.
View Article and Find Full Text PDFLow-temperature fluorescence measurements are frequently used in photosynthesis research to assess photosynthetic processes. Upon illumination of photosystem II (PSII) frozen to 77 K, fluorescence quenching is observed. In this work, we studied the light-induced quenching in intact cells of Chlamydomonas reinhardtii at 77 K using time-resolved fluorescence spectroscopy with a streak camera setup.
View Article and Find Full Text PDF