Publications by authors named "Stojan Trajanovski"

Purpose: Lung cancer is the leading cause of cancer mortality in the US, responsible for more deaths than breast, prostate, colon and pancreas cancer combined and large population studies have indicated that low-dose computed tomography (CT) screening of the chest can significantly reduce this death rate. Recently, the usefulness of Deep Learning (DL) models for lung cancer risk assessment has been demonstrated. However, in many cases model performances are evaluated on small/medium size test sets, thus not providing strong model generalization and stability guarantees which are necessary for clinical adoption.

View Article and Find Full Text PDF

Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA).

View Article and Find Full Text PDF

Objective: The utilization of hyperspectral imaging (HSI) in real-time tumor segmentation during a surgery have recently received much attention, but it remains a very challenging task.

Methods: In this work, we propose semantic segmentation methods, and compare them with other relevant deep learning algorithms for tongue tumor segmentation. To the best of our knowledge, this is the first work using deep learning semantic segmentation for tumor detection in HSI data using channel selection, and accounting for more spatial tissue context, and global comparison between the prediction map, and the annotation per sample.

View Article and Find Full Text PDF

Background: Solving the shortest path and min-cut problems are key in achieving high-performance and robust communication networks. Those problems have often been studied in deterministic and uncorrelated networks both in their original formulations as well as in several constrained variants. However, in real-world networks, link weights (e.

View Article and Find Full Text PDF

The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature, we show that the AID model is realistic by obtaining a good fit with Facebook data.

View Article and Find Full Text PDF

The interplay between disease dynamics on a network and the dynamics of the structure of that network characterizes many real-world systems of contacts. A continuous-time adaptive susceptible-infectious-susceptible (ASIS) model is introduced in order to investigate this interaction, where a susceptible node avoids infections by breaking its links to its infected neighbors while it enhances the connections with other susceptible nodes by creating links to them. When the initial topology of the network is a complete graph, an exact solution to the average metastable-state fraction of infected nodes is derived without resorting to any mean-field approximation.

View Article and Find Full Text PDF

For a fixed number N of nodes, the number of links L in the line graph H(N,L) can only appear in consecutive intervals, called a band of L. We prove that some consecutive integers can never represent the number of links L in H(N,L), and they are called a bandgap of L. We give the exact expressions of bands and bandgaps of L.

View Article and Find Full Text PDF