Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline.
View Article and Find Full Text PDFThe atmosphere is an important transport medium for polymeric anthropogenic particles such as microplastics (MPs). The analysis of particles deposited on the snowpack enables monitoring the abundance and transport of MPs and semi-synthetic fibers. In the current study, the abundance of MPs and man-made textile fibers in deposited snow in Western Siberia, Russia, was investigated in a large area ranging from the Altai Mountains (52°01″N) to the Arctic Circle (66°30″N).
View Article and Find Full Text PDFMicroplastics (MPs) are emerging as an atmospheric pollutant. Here, we present a method of estimating MP resuspension with mineral dust in bare soil based on reported MP mass in soils, their enrichment in suspended dust relative to soil, and a mineral dust resuspension scheme. Using the estimated resuspensions, we simulate the global atmospheric MP transport and deposition using the dispersion model FLEXPART for two particle shape scenarios, spheres, and fibers.
View Article and Find Full Text PDFThe deposition of airborne microplastic particles, including those exceeding 1000 μm in the longest dimension, has been observed in the most remote places on earth. However, their deposition patterns are difficult to reproduce using current atmospheric transport models. These models usually treat particles as perfect spheres, whereas the real shapes of microplastic particles are often far from spherical.
View Article and Find Full Text PDFThe Fenwei Plain is one of China's most polluted regions, with poor atmospheric dispersion conditions and an outdated energy structure. After implementing multiple policies in recent years, significant reductions in air pollutant concentrations were observed. In this study, based on the Lagrangian-Bayesian inversion framework FLEXINVERT, we constructed a variable resolution inversion system focusing on the Fenwei Plain and inferred the carbon monoxide (CO) emissions using in-situ atmospheric CO observations from April 2014 to March 2020.
View Article and Find Full Text PDFMilitary conflicts result in local environmental damage, but documenting regional and larger scale impacts such as heavy metal pollution has proven elusive. Anthropogenic emissions of bismuth (Bi) include coal burning and various commodity productions but no emission estimates over the past century exist. Here we used Bi measurements in ice cores from the French Alps to show evidence of regional-scale Bi pollution concurrent with the Spanish Civil War and World War II.
View Article and Find Full Text PDFBlack carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records.
View Article and Find Full Text PDFFrequency and intensity of warm and moist air-mass intrusions into the Arctic have increased over the past decades and have been related to sea ice melt. During our year-long expedition in the remote central Arctic Ocean, a record-breaking increase in temperature, moisture and downwelling-longwave radiation was observed in mid-April 2020, during an air-mass intrusion carrying air pollutants from northern Eurasia. The two-day intrusion, caused drastic changes in the aerosol size distribution, chemical composition and particle hygroscopicity.
View Article and Find Full Text PDFAir pollution and its effects on human health and the environment are one of the main concerns in urban areas. This study focuses on the distribution and changes in the concentrations of ozone and its precursors (i.e.
View Article and Find Full Text PDFNew Zealand was among the last habitable places on earth to be colonized by humans. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Māori settlement, but the precise timing and magnitude of associated biomass-burning emissions are unknown, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years.
View Article and Find Full Text PDFDuring the Lunar New Year Holiday of 2020, China implemented an unprecedented lockdown to fight the COVID-19 outbreak, which strongly affected the anthropogenic emissions. We utilized elemental carbon observations (equivalent to black carbon, BC) from 42 sites and performed inverse modeling to determine the impact of the lockdown on the weekly BC emissions and quantify the effect of the stagnant conditions on BC observations in densely populated eastern and northern China. BC emissions declined 70% (eastern China) and 48% (northern China) compared to the first half of January.
View Article and Find Full Text PDFThis study investigates the changes of short-lived climate pollutants and other air pollutants during the COVID-19 pandemic in Tehran, Iran. Concentrations of air pollutants were obtained from 21 monitoring stations for the period from 5 January 2019 to 5 August 2019, representing normal conditions unaffected by COVID-19, and the period 5 January 2020 to 5 August 2020, i.e.
View Article and Find Full Text PDFBlack carbon (BC) aerosols perturb climate and impoverish air quality/human health-affecting ∼1.5 billion people in South Asia. However, the lack of source-diagnostic observations of BC is hindering the evaluation of uncertain bottom-up emission inventories (EIs) and thereby also models/policies.
View Article and Find Full Text PDFLarge-eddy simulation (LES) experiments have been performed using the Parallelized LES Model (PALM). A methodology for validating and understanding LES results for plume dispersion and concentration fluctuations in an atmospheric-like flow is presented. A wide range of grid resolutions is shown to be necessary for investigating the convergence of statistical characteristics of velocity and scalar fields.
View Article and Find Full Text PDFIn recent years, marine, freshwater and terrestrial pollution with microplastics has been discussed extensively, whereas atmospheric microplastic transport has been largely overlooked. Here, we present global simulations of atmospheric transport of microplastic particles produced by road traffic (TWPs - tire wear particles and BWPs - brake wear particles), a major source that can be quantified relatively well. We find a high transport efficiencies of these particles to remote regions.
View Article and Find Full Text PDFThe intensity of the heaviest extreme precipitation events is known to increase with global warming. How often such events occur in a warmer world is however less well established, and the combined effect of changes in frequency and intensity on the total amount of rain falling as extreme precipitation is much less explored, in spite of potentially large societal impacts. Here, we employ observations and climate model simulations to document strong increases in the frequencies of extreme precipitation events occurring on decadal timescales.
View Article and Find Full Text PDFLead pollution in Arctic ice reflects large-scale historical changes in midlatitude industrial activities such as ancient lead/silver production and recent fossil fuel burning. Here we used measurements in a broad array of 13 accurately dated ice cores from Greenland and Severnaya Zemlya to document spatial and temporal changes in Arctic lead pollution from 200 BCE to 2010 CE, with interpretation focused on 500 to 2010 CE. Atmospheric transport modeling indicates that Arctic lead pollution was primarily from European emissions before the 19th-century Industrial Revolution.
View Article and Find Full Text PDFBlack carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer.
View Article and Find Full Text PDFLead pollution in Arctic ice reflects midlatitude emissions from ancient lead-silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages.
View Article and Find Full Text PDFJ Environ Radioact
April 2018
We describe a submicron aerosol particle sampled at an altitude of 7 km near the Aleutian Islands that contained a small percentage of enriched uranium oxide. U was 3.1 ± 0.
View Article and Find Full Text PDFAerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds.
View Article and Find Full Text PDFMethane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year.
View Article and Find Full Text PDF