Autophagy-related proteins (Atgs) drive the lysosome-mediated degradation pathway, autophagy, to enable the clearance of dysfunctional cellular components and maintain homeostasis. In humans, this process is driven by the mammalian Atg8 (mAtg8) family of proteins comprising the LC3 and GABARAP subfamilies. The mAtg8 proteins play essential roles in the formation and maturation of autophagosomes and the capture of specific cargo through binding to the conserved LC3-interacting region (LIR) sequence within target proteins.
View Article and Find Full Text PDFBackground: Calcineurin inhibitors induce detrimental vascular remodeling, which may be one cause of chronic allograft failure. Real-time contrast-enhanced sonography (CES) is a relatively new technique in providing quantitative information on microvascular tissue perfusion in kidney allografts in more detail. The purpose of the study was to explore whether acute changes of kidney allograft microperfusion due to the administration of cyclosporine A (CsA) and tacrolimus (Tac) can be evidenced using real-time CES.
View Article and Find Full Text PDFWe have observed an aggregation of carbon or carbon derivatives on platinum and natively oxidized silicon surfaces during STM measurements in ultra-high vacuum on solvent-cleaned samples previously structured by e-beam lithography. We imaged the aggregated layer with scanning tunneling microscopy (STM) as well as scanning electron microscopy (SEM). The amount of the aggregated material increases with the number of STM scans and with the tunneling voltage.
View Article and Find Full Text PDFImpact-induced ejections of rocks from planetary surfaces are frequent events in the early history of the terrestrial planets and have been considered as a possible first step in the potential interplanetary transfer of microorganisms. Spores of Bacillus subtilis were used as a model system to study the effects of a simulated impact-caused ejection on rock-colonizing microorganisms using a high-explosive plane wave setup. Embedded in different types of rock material, spores were subjected to extremely high shock pressures (5 to 50 GPa) lasting for fractions of microseconds to seconds.
View Article and Find Full Text PDFThe scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e.
View Article and Find Full Text PDFThis report focuses on nanotools based on the scanning force microscope (SFM) for imaging, measuring, and manipulating biological matter at the sub-micron scale. Because pathophysiological processes often occur at the (sub-) cellular scale, the SFM has opened the exciting possibility to spot diseases at a stage before they become symptomatic and cause functional impairments in the affected part of the body. Such presymptomatic detection will be key to developing effective therapies to slow or halt disease progression.
View Article and Find Full Text PDFBioinformatics
November 2006
Motivation: Conformational rearrangements during molecular interactions are observed in a wide range of biological systems. However, computational methods that aim at simulating and predicting molecular interactions are still largely ignoring the flexible nature of biological macromolecules as the number of degrees of freedom is computationally intractable when using brute force representations.
Results: In this article, we present a computational data structure called the Flexibility Tree (FT) that enables a multi-resolution and hierarchical encoding of molecular flexibility.
Can J Physiol Pharmacol
September 2006
Small ions and molecules can traverse the nuclear pore complex (NPC) simply by diffusion, whereas larger proteins and RNAs require specific signals and factors that facilitate their passage through the NPC. Our understanding of the factors that participate and regulate nucleocytoplasmic transport has increased tremendously over the past years, whereas the actual translocation step through the NPC has remained largely unclear. Here, we present and discuss recent findings on the interaction between the NPC and transport receptors and provide new evidence that the NPC acts as a constrained diffusion pore for molecules and particles without retention signal and as an affinity gate for signal-bearing cargos.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) are large supramolecular assemblies that perforate the double-membraned nuclear envelope and serve as the sole gateways of molecular exchange between the cytoplasm and the nucleus in interphase cells. Combining novel specimen preparation regimes with innovative use of high-resolution scanning electron microscopy, Hans Ris produced in the late eighties stereo images of the NPC with unparalleled clarity and structural detail, thereby setting new standards in the field. Since that time, efforts undertaken to resolve the molecular structure and architecture, and the numerous interactions that occur between NPC proteins (nucleoporins), soluble transport receptors, and the small GTPase Ran, have led to a deeper understanding of the functional role of NPCs in nucleocytoplasmic transport.
View Article and Find Full Text PDFThe evolving technology of computer autofabrication makes it possible to produce physical models for complex biological molecules and assemblies. Augmented reality has recently developed as a computer interface technology that enables the mixing of real-world objects and computer-generated graphics. We report an application that demonstrates the use of autofabricated tangible models and augmented reality for research and communication in molecular biology.
View Article and Find Full Text PDFTo go beyond the current structural consensus model of the nuclear pore complex (NPC), we performed cryo-electron tomography of fully native NPCs from Xenopus oocyte nuclear envelopes (NEs). The cytoplasmic face of the NPC revealed distinct anchoring sites for the cytoplasmic filaments, whereas the nuclear face was topped with a massive distal ring positioned above the central pore with indications of the anchoring sites for the nuclear basket filaments and putative intranuclear filaments. The rather "spongy" central framework of the NPC was perforated by an elaborate channel and void system, and at the membrane pore interface it exhibited distinct "handles" protruding into the lumen of the NE.
View Article and Find Full Text PDFDrug-resistant strains are rapidly selected during AIDS therapy because of the high rate of mutation in HIV. In this report, we present an evolutionary simulation method for analysis of viral mutation and its use for optimization of HIV-1 protease drugs to improve their robustness in the face of resistance mutation. We first present an analysis of the range of resistant mutants that produce viable viruses by using a volume-based viral fitness model.
View Article and Find Full Text PDFThe binding of uropathogenic Escherichia coli to the urothelial surface is a critical initial event for establishing urinary tract infection, because it prevents the bacteria from being removed by micturition and it triggers bacterial invasion as well as host cell defense. This binding is mediated by the FimH adhesin located at the tip of the bacterial type 1-fimbrium and its urothelial receptor, uroplakin Ia (UPIa). To localize the UPIa receptor on the 16 nm particles that form two-dimensional crystals of asymmetric unit membrane (AUM) covering >90 % of the apical urothelial surface, we constructed a 15 A resolution 3-D model of the mouse 16 nm AUM particle by negative staining and electron crystallography.
View Article and Find Full Text PDFThe beta-thymosins are intracellular monomeric (G-)actin sequestering proteins forming 1:1 complexes with G-actin. Here, we analysed the interaction of thymosin beta(4) with F-actin. Thymosin beta(4) at 200 microM was chemically cross-linked to F-actin.
View Article and Find Full Text PDFJ Struct Biol
September 2000
The atomic force microscope (AFM) is a unique imaging tool that enables the tracking of single macromolecule events in response to physiological effectors and pharmacological stimuli. Direct correlation can therefore be made between structural and functional states of individual biomolecules in an aqueous environment. This review explores how time-lapse AFM has been used to learn more about normal and disease-associated biological processes.
View Article and Find Full Text PDFTo assess more systematically functional differences among non-muscle and muscle actins and the effect of specific mutations on their function, we compared actin from Dictyostelium discoideum (D-actin) with actin from rabbit skeletal muscle (R-actin) with respect to the formation of filaments, their three-dimensional structure and mechanical properties. With Mg(2+) occupying the single high-affinity divalent cation-binding site, the course of polymerization is very similar for the two types of actin. In contrast, when Ca(2+ )is bound, D-actin exhibits a significantly longer lag phase at the onset of polymerization than R-actin.
View Article and Find Full Text PDFTwo factors have limited studies of the properties of nucleotide-free actin (NFA). First, actin lacking bound nucleotide denatures rapidly without stabilizing agents such as sucrose; and second, without denaturants such as urea, it is difficult to remove all of the bound nucleotide. We used apyrase, EDTA and Dowex-1 to prepare actin that is stable in sucrose and approximately 99 % free of bound nucleotide.
View Article and Find Full Text PDFMicrosc Res Tech
October 1999
Actin, though highly conserved, exhibits a myriad of diverse functions, most of which ultimately depend on its intrinsic ability to rapidly assemble and disassemble filamentous structures. Many organisms synthesize multiple actin isoforms even within the same cell. Tissue-specific expression patterns and tight developmental regulation as well as a high conservation across species emphasize the functional importance of isoforms.
View Article and Find Full Text PDFCurr Opin Cell Biol
June 1999
Toward dissecting the molecular composition and architecture of the nuclear pore complex (NPC), over the past 18 months novel nucleoporins and NPC subcomplexes were identified and characterized. The three-dimensional structure of isolated yeast NPCs was determined by electron cryomicroscopy. New specimen preparation and labeling protocols localized a number of nucleoporins and NPC subcomplexes within the three-dimensional architecture of the yeast NPC.
View Article and Find Full Text PDF