Purpose: Loddo et al. (Br J Cancer 100:959-70, 2009) established the prognostic significance of cell cycle markers and "Cell-Cycle Phenotypes" in breast carcinoma. This study aims to 1) identify prognostic cell-cycle markers in sarcoma, and 2) assess the prognostic potential of specific cell-cycle phenotypes in sarcoma.
View Article and Find Full Text PDFCancer vaccines induce cancer-specific T-cells capable of eradicating cancer cells. The impact of cancer peptide vaccines (CPV) on the tumor microenvironment (TME) remains unclear. S-588410 is a CPV comprising five human leukocyte antigen (HLA)-A*24:02-restricted peptides derived from five cancer testis antigens, DEPDC1, MPHOSPH1, URLC10, CDCA1 and KOC1, which are overexpressed in esophageal cancer.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is still an unabated global killer with little advancement in its survival rate. DNA replication licensing proteins and Aurora kinase A are biomarkers that play important roles in genomic stability. The expression profile of minichromosomal maintenance protein 2 (MCM2), Ki67, geminin, and Aurora-A were linked to clinicopathological and outcome parameters, survival, and DNA content in 125 cases of OSCC.
View Article and Find Full Text PDFCell cycle status may play an important role in directing patient therapy. We therefore determined the cell cycle status of leukaemic cells by immunophenotypic analysis of bone marrow trephine biopsies from 181 patients with acute myeloid leukaemia (AML) and correlated the results with biological features and clinical outcome. There was considerable heterogeneity between patients.
View Article and Find Full Text PDFDNA replication initiation is a key event in the cell cycle, which is dependent on 2 kinases - CDK2 and CDC7. Here we report a novel mechanism in which p53 induces G1 checkpoint and cell cycle arrest by downregulating CDC7 kinase in response to genotoxic stress. We demonstrate that p53 controls CDC7 stability post-transcriptionally via miR-192/215 and post-translationally via Fbxw7β E3 ubiquitin ligase.
View Article and Find Full Text PDFMS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response.
View Article and Find Full Text PDFUsing immunohistochemistry and flow cytometry to define phases of the cell cycle, this study shows that a high proportion of acute myeloid leukaemia (AML) blasts obtained from trephine biopsies are cycling, whereas >95% of peripheral blood-derived blasts are arrested in G1 . Results obtained from bone marrow aspirates are more similar to those from blood rather than from trephine biopsies. These differences were confirmed by gene expression profiling in a patient with high count AML.
View Article and Find Full Text PDFPurpose: Cdc7 is a serine/threonine kinase which is responsible for the 'firing' of replication origins leading to initiation of DNA replication. Inhibition or depletion of Cdc7 in normal cells triggers a DNA origin activation checkpoint causing a reversible G1 arrest. Here we investigate Cdc7 as a novel therapeutic target in pancreatic cancer.
View Article and Find Full Text PDFWe have used a subcellular spatial razor approach based on LC-MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell.
View Article and Find Full Text PDFAberrant mitosis is a common feature of cancer, yet little is known about the altered genes causing mitotic defects. We screened human tumours for cells with morphological signatures of highly specific mitotic defects previously assigned to candidate genes in a genome-wide RNA interference screen carried out in HeLa cells (www.mitocheck.
View Article and Find Full Text PDFDepletion of DNA replication initiation factors such as CDC7 kinase triggers the origin activation checkpoint in healthy cells and leads to a protective cell cycle arrest at the G1 phase of the mitotic cell division cycle. This protective mechanism is thought to be defective in cancer cells. To investigate how this checkpoint is activated and maintained in healthy cells, we conducted a quantitative SILAC analysis of the nuclear- and cytoplasmic-enriched compartments of CDC7-depleted fibroblasts and compared them to a total cell lysate preparation.
View Article and Find Full Text PDFBackground: Urinary biomarkers for bladder cancer detection are constrained by inadequate sensitivity or specificity. Here we evaluate the diagnostic accuracy of Mcm5, a novel cell cycle biomarker of aberrant growth, alone and in combination with NMP22.
Methods: 1677 consecutive patients under investigation for urinary tract malignancy were recruited to a prospective blinded observational study.
Deregulation of the cell cycle underlies the aberrant cell proliferation that characterizes cancer and loss of cell cycle checkpoint control promotes genetic instability. During the past two decades, cancer genetics has shown that hyperactivating mutations in growth signalling networks, coupled to loss of function of tumour suppressor proteins, drives oncogenic proliferation. Gene expression profiling of these complex and redundant mitogenic pathways to identify prognostic and predictive signatures and their therapeutic targeting has, however, proved challenging.
View Article and Find Full Text PDFThe small molecule carrier class of biomolecule transporters, modeled on the third helix of the Antennapedia homeodomain, has previously been shown to transport active proteins into cells. Here, we show an improved synthetic route to small molecule carriers, including Molander chemistry using trifluoroborate salts to improve the yield of the Suzuki-Miyaura coupling step for the formation of the biphenyl backbone. The required boronic acids could be formed by the reaction of a 2-(dimethylamino)ethyl ether-modified aryl Grignard reagent with triisopropyl borate.
View Article and Find Full Text PDFDuring cell proliferation, the abundance of the glycolysis-promoting enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3 (PFKFB3), is controlled by the ubiquitin ligase APC/C-Cdh1 via a KEN box. We now demonstrate in synchronized HeLa cells that PFKFB3, which appears in mid-to-late G1, is essential for cell division because its silencing prevents progression into S phase. In cells arrested by glucose deprivation, progression into S phase after replacement of glucose occurs only when PFKFB3 is present or is substituted by the downstream glycolytic enzyme 6-phosphofructo-1-kinase.
View Article and Find Full Text PDFPerturbation of DNA replication initiation arrests human cells in G1, pointing towards an origin activation checkpoint. We used RNAi against Cdc7 kinase to inhibit replication initiation and dissect this checkpoint in fibroblasts. We show that the checkpoint response is dependent on three axes coordinated through the transcription factor FoxO3a.
View Article and Find Full Text PDFTreatment options for triple-receptor negative (ER-/PR-/Her2-) and Her2-overexpressing (ER-/PR-/Her2+) breast cancers with acquired or de novo resistance are limited, and metastatic disease remains incurable. Targeting of growth signaling networks is often constrained by pathway redundancy or growth-independent cancer cell cycles. The cell-cycle protein Cdc7 regulates S phase by promoting DNA replication.
View Article and Find Full Text PDFAn origin activation checkpoint has recently been discovered in the G1 phase of the mitotic cell cycle, which can be triggered by loss of DNA replication initiation factors such as the Cdc7 kinase. Insufficient levels of Cdc7 activate cell cycle arrest in normal cells, whereas cancer cells appear to lack this checkpoint response, do not arrest, and proceed with an abortive S phase, leading to cell death. The differential response between normal and tumor cells at this checkpoint has led to widespread interest in the development of pharmacological Cdc7 inhibitors as novel anticancer agents.
View Article and Find Full Text PDFBackground: The accuracy of prostate-specific antigen (PSA) testing in prostate cancer detection is constrained by low sensitivity and specificity. Dysregulated expression of minichromosome maintenance (Mcm) 2-7 proteins is an early event in epithelial multistep carcinogenesis and thus MCM proteins represent powerful cancer diagnostic markers. In this study we investigate Mcm5 as a urinary biomarker for prostate cancer detection.
View Article and Find Full Text PDFCancer biomarkers provide an opportunity to diagnose tumours earlier and with greater accuracy. They can also identify those patients most at risk of disease recurrence and predict which tumours will respond to different therapeutic approaches. Such biomarkers will be especially useful in the diagnosis and management of bladder cancer.
View Article and Find Full Text PDFPurpose: The DNA replication licensing machinery is integral to the control of proliferation, differentiation, and maintenance of genomic stability in human cells. We have analyzed replication licensing factors (RLF), together with DNA ploidy status, to investigate their role in progression of penile squamous cell carcinoma and to assess their utility as novel prognostic tools.
Experimental Design: In a cohort of 141 patients, we linked protein expression profiles of the standard proliferation marker Ki67 and the RLFs Mcm2 and geminin to clinicopathologic variables, ploidy status, and clinical outcome.
Purpose: There is a lack of prognostic and predictive biomarkers in epithelial ovarian carcinoma, and the targeting of oncogenic signaling pathways has had limited impact on patient survival in this highly heterogeneous disease. The origin licensing machinery, which renders chromosomes competent for DNA replication, acts as a convergence point for upstream signaling pathways. We tested the hypothesis that Cdc7 kinase, a core component of the licensing machinery, is predictive of clinical outcome and may constitute a novel therapeutic target in epithelial ovarian carcinoma.
View Article and Find Full Text PDFMultiparameter analysis of core regulatory proteins involved in G1-S and G2-M cell-cycle transitions provides a powerful biomarker readout for assessment of the cell-cycle state. We have applied this algorithm to breast cancer to investigate how the cell cycle impacts on disease progression. Protein expression profiles of key constituents of the DNA replication licensing pathway (Mcm2, geminin) and mitotic machinery (Plk1, Aurora A and the Aurora substrate histone H3S10ph) were generated for a cohort of 182 patients and linked to clinicopathological parameters.
View Article and Find Full Text PDFProductive infections by human papillomaviruses (HPVs) are restricted to nondividing, differentiated keratinocytes. HPV early proteins E6 and E7 deregulate cell cycle progression and activate the host cell DNA replication machinery in these cells, changes essential for virus synthesis. Productive virus replication is accompanied by abundant expression of the HPV E4 protein.
View Article and Find Full Text PDFThe transducing ability of the third helix of transcription factor homeodomains is effectively mimicked by a biphenyl system displaying guanidine groups. The biphenyl class of small molecule carriers (SMoCs) can carry biomolecules into a wide variety of cell types. A "combinatorial" approach to the synthesis of SMoCs is described using sequential Pd(0) coupling chemistry to assemble the molecules from highly functionalized building blocks.
View Article and Find Full Text PDF