Publications by authors named "Stodolak-Zych E"

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

The study examined the possibility of intercalation of montmorillonite with neomycin in an aqueous drug solution and the factors influencing the effectiveness of this process, such as the ion exchange capacity and process conditions, including the time and temperature of incubation with the drug. X-ray diffractometry (XRD), infrared spectroscopy (FTIR), thermal analysis (DSC/TG), and Zeta potential measurement were used to confirm drug intercalation as well as to investigate the nature of clay-drug interactions. The obtained conjugates with the most favorable physicochemical properties were also tested for antibacterial response against Gram-negative bacteria () to confirm that the bactericidal properties of neomycin were retained after intercalation and UV-VIS spectrophotometry was used to examine the kinetics of drug release from the carrier.

View Article and Find Full Text PDF

Background: Protein adsorption on medical devices in contact with blood is a significant issue during renal replacement therapy. Main forces determining fouling are the electrostatic interactions between membrane and charged protein, but the dialysis membrane surface charges can be adjusted by modifying the polymer matrix to decrease the blood plasma protein adsorption.

Methods: In this study, polysulfone membranes (PSU) were modified by incorporation of carbon nanoparticles such as: multiwall carbon nanotubes (2 wt.

View Article and Find Full Text PDF

The multiscale approach in designing substrates for regenerative medicine endows them with beneficial properties determining their performance in the body. Substrates for corneal regeneration should reveal the proper transparency, mechanical properties and microstructure to maintain the functionality of the regenerated tissue. In our study, series of non-wovens with different fibres orientation (random (R), aligned (A)), topography (shish-kebab (KK), core-shell (CS)) and thickness were fabricated via electrospinning.

View Article and Find Full Text PDF

An extracorporeal blood purification method called continuous renal replacement therapy uses a porous hollow-fiber polymeric membrane that is exposed to prolonged contact with blood. In that condition, like with any other submerged filtration membrane, the hemofilter loses its properties over time and use resulting in a rapid decline in flux. The most significant reason for this loss is the formation of a biofilm.

View Article and Find Full Text PDF

The aim of the study was to develop a method of laparoscopic embryo transfer in pigs and to compare different variants of this method. Two catheter diameters (1.6 mm and 1.

View Article and Find Full Text PDF
Article Synopsis
  • * This study examined bi-polymer scaffolds made of polylactide (PLA) and polyvinyl alcohol (PVA) in different ratios, assessing the effects of removing PVA fibers on scaffold porosity and water absorption.
  • * The removal of PVA fibers significantly increased porosity from 78% to 99%, reduced water absorption time, and improved cell penetration, indicating a more effective scaffold design for skin regeneration.
View Article and Find Full Text PDF

The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but also on the biocidal properties of the carriers. In order to fully examine the halloysite in terms of the possibility of gentamicin incorporating, a number of modifications of the native halloysite were carried out prior to gentamicin intercalation with the use of sodium alkali, sulfuric and phosphoric acids, curcumin and the process of delamination of nanotubes (expanded halloysite) with ammonium persulfate in sulfuric acid. Gentamicin was added to unmodified and modified halloysite in an amount corresponding to the cation exchange capacity of pure halloysite from the Polish Dunino deposit, which was the reference sample for all modified carriers.

View Article and Find Full Text PDF

Emulsion electrospinning is a method of modifying a fibers' surface and functional properties by encapsulation of the bioactive molecules. In our studies, bovine serum albumin (BSA) played the role of the modifier, and to protect the protein during the electrospinning process, the W/O (water-in-oil) emulsions were prepared, consisting of polymer and micelles formed from BSA and anionic (sodium dodecyl sulfate-S) or nonionic (Tween 80-T) surfactant. It was found that the micelle size distribution was strongly dependent on the nature and the amount of the surfactant, indicating that a higher concentration of the surfactant results in a higher tendency to form smaller micelles (4-9 µm for S and 8-13 µm for T).

View Article and Find Full Text PDF

Electrospinning was used to obtain multifunctional fibrous composite materials with a matrix of poly-ɛ-caprolactone (PCL) and 2 wt.% addition of a nanofiller: montmorillonite (MMT), montmorillonite intercalated with gentamicin sulphate (MMTG) or gentamicin sulphate (G). In the first stage, the aluminosilicate gallery was modified by introducing gentamicin sulfate into it, and the effectiveness of the intercalation process was confirmed on the basis of changes in the clay particle size from 0.

View Article and Find Full Text PDF

In this study, we propose a new approach in the anterior cruciate ligament (ACL) replacement to provide stability and integration with bone tunnel. A polylactide (PLA)-based tubular implant was used to support the graft stabilization in femoral and tibial bones and to stimulate the healing process after (ACL) replacement on a sheep model. The ACL was replaced with an autologous Achilles tendon split graft.

View Article and Find Full Text PDF

It was shown that carbon nonwoven fabrics obtained from polyacrylonitrile fibers (PAN) by thermal conversion may be modified on the surface in order to improve their biological compatibility and cellular response, which is particularly important in the regeneration of bone or cartilage tissue. Surface functionalization of carbon nonwovens containing C-C double bonds was carried out using in situ generated diazonium salts derived from aromatic amines containing both electron-acceptor and electron-donor substituents. It was shown that the modification method characteristic for materials containing aromatic structures may be successfully applied to the functionalization of carbon materials.

View Article and Find Full Text PDF

The aim of the review was to describe a complex microstructure and biomechanical properties of the articular cartilage as well as a current review of its pathologies encountered in veterinary practice. The articular cartilage with its unique features: complex microarchitecture, significant mechanical durability and elasticity, lacking blood, lymphatic vessels, and innervation, seems to stand in contradiction to the laws of biology. It can be involved in a vast majority of diseases, from osteoarthrosis as a result of natural aging process to more complex in nature like osteochondromatosis.

View Article and Find Full Text PDF

Skin regeneration requires a three-dimensional (3D) scaffold for cell adhesion, growth and proliferation. A type of the scaffold offering a 3D structure is a nonwoven material produced via a melt-blown technique. Process parameters of this technique can be adapted to improve the cellular response.

View Article and Find Full Text PDF

The aim of this work was to study effect of the type of silica nanoparticles on the properties of nanocomposites for application in the guided bone regeneration (GBR). Two types of nanometric silica particles with different size, morphology and specific surface area (SSA) i.e.

View Article and Find Full Text PDF

Purpose: The polymeric porous surface of fibres (PLA) may influence the kinetics of release of biologically active compounds (gentamicin, G and ethacridine lactate, R) affecting development of a bacterial biofilm.

Methods: The porous fibres with different morphology were manufactured by the electrospinning method from ternary systems composed of PLA and selected solvents. Fibres morphology was examined using a scanning electron microscopy (SEM), their structure was analyzed by FT-IR ATR spectroscopy and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate the possibility of intercalation of gentamicin and neomycin in montmorillonite (MMT) nanofillers, as well as to study the in vitro antimicrobial properties of nanocomposite films containing a small amount of thus obtained nanofillers.

Methods: The polylactide matrix (PLA) nanocomposite films with drug-intercalated montmorillonite fillers were obtained by casting after intercalation of drugs in aqueous solutions. The efficiency of intercalation has been confirmed by X-ray diffraction (XRD) and Zeta potential measurements.

View Article and Find Full Text PDF

Current restrictions on the use of antibiotics, associated with increases in bacterial resistance, require new solutions, including materials with antibacterial properties. In this study, copper alginate fibers obtained using the classic wet method were used to make nonwovens which were modified with arginine-glycine-aspartic acid (RGD) derivatives. Stable polysaccharide-peptide conjugates formed by coupling with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO), and materials with physically embedded RGD derivatives, were obtained.

View Article and Find Full Text PDF

The exact causes of failure of anterior cruciate ligament (ACL) reconstruction are still unknown. A key to successful ACL reconstruction is the prevention of bone tunnel enlargement (BTE). In this study, a new strategy to improve the outcome of ACL reconstruction was analyzed using a bioresorbable polylactide (PLA) stent as a catalyst for the healing process.

View Article and Find Full Text PDF

Purpose: Physiotherapy with the use of pulsed magnetic fields is one of the methods of activating the processes of bone healing and regeneration. Exposing materials serving as membranes in guided bone regeneration (GBR) or guided tissue regeneration (GTR) to magnetic fields is an effective model that allows to monitor changes in the material under the influence of the magnetic field.

Methods: Materials engineering methods were used to verify the extent of material degradation resulting from magnetic field exposure in an aqueous environment.

View Article and Find Full Text PDF

This study represents the unique analysis of the electrospun scaffolds with the controlled and stable surface potential without any additional biochemical modifications for bone tissue regeneration. We controlled surface potential of polyvinylidene fluoride (PVDF) fibers with applied positive and negative voltage polarities during electrospinning, to obtain two types of scaffolds PVDF(+) and, PVDF(-). The cells' attachments to PVDF scaffolds were imaged in great details with advanced scanning electron microscopy (SEM) and 3D tomography based on focus ion beam (FIB-SEM).

View Article and Find Full Text PDF

The aims of this study were to identify the short aromatic peptides which are able to form highly ordered amyloid-like structures in self-assembling processes, to test the influence of length of hydrophobic peptides on tendency to aggregation, and to check if aggregated peptides fulfill requirements expected for materials useful for scaffolding. All tested hydrophobic peptides were prepared on solid phase by using DMT/NMM/TsO as a coupling reagent. The progress of aggregation was studied by set of independent tests.

View Article and Find Full Text PDF

The aim of this study was to verify whether L-lactide/DL-lactide copolymer 80/20 (PLDLLA) and platelet-rich plasma (PRP) trigger bone formation within critical-sized calvarial defects in adult sheep ( = 6). Two craniectomies, each ca. 3 cm in diameter, were created in each animal.

View Article and Find Full Text PDF

This study investigates the propensity of short peptides to self-organize and the influence of aggregates on cell cultures. The dipeptides were derived from both enantiomers of identical aromatic amino acids and tripeptides were prepared from two identical aromatic amino acids with one cysteine or methionine residue in the C-terminal, N-terminal, or central position. The formation or absence of fibrous structures under physiological conditions was established using Congo Red and Thioflavine T assays as well as by microscopic examination using normal and polarized light.

View Article and Find Full Text PDF

Adsorption or immobilization of proteins on synthetic surfaces is a key issue in the context of the biocompatibility of implant materials, especially those intended for the needs of cardiac surgery but also for the construction of biosensors or nanomaterials used as drug carriers. The subject of research was the analysis of Raman spectra of two types of fibrous carbon nanomaterials, of great potential for biomedical applications, incubated with human serum albumin (HSA). The first nanomaterial has been created on the layer of MWCNTs deposited by electrophoretic method (EPD) and then covered by thin film of pyrolytic carbon introduced by chemical vapor deposition process (CVD).

View Article and Find Full Text PDF