With current treatments addressing only a fraction of pathogens and new viral threats constantly evolving, there is a critical need to expand our existing therapeutic arsenal. To speed the rate of discovery and better prepare against future threats, we establish a high-throughput platform capable of screening compounds against 40 diverse viral proteases simultaneously. This multiplex approach is enabled by using cellular biosensors of viral protease activity combined with DNA-barcoding technology, as well as several design innovations that increase assay sensitivity and correct for plate-to-plate variation.
View Article and Find Full Text PDFVariants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.
View Article and Find Full Text PDFMechanisms of iron-dependent cell death reveal potential new targets for disease treatment.
View Article and Find Full Text PDFRed blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. However, the genetic underpinnings of RBC metabolic heterogeneity and extravascular hemolysis at population scale are incompletely understood. Based on the breeding of 8 founder strains with extreme genetic diversity, the Jackson laboratory diversity outbred population can capture the impact of genetic heterogeneity in like fashion to population-based studies.
View Article and Find Full Text PDFVarious types of cell death program are needed for cells to respond to changes in physiological conditions. In this collection of Voices, we asked scientists to tell the story behind their contributions to the identification and mechanistic dissection of cell death pathways and to discuss future directions for such research.
View Article and Find Full Text PDFThe development of functional neurons is a complex orchestration of multiple signaling pathways controlling cell proliferation and differentiation. Because the balance of antioxidants is important for neuronal survival and development, we hypothesized that ferroptosis must be suppressed to gain neurons. We find that removal of antioxidants diminishes neuronal development and laminar organization of cortical organoids, which is fully restored when ferroptosis is inhibited by ferrostatin-1 or when neuronal differentiation occurs in the presence of vitamin A.
View Article and Find Full Text PDFGlioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development.
View Article and Find Full Text PDFFerroptosis, an iron-dependent form of nonapoptotic cell death mediated by lipid peroxidation, has been implicated in the pathogenesis of multiple diseases. Subcellular organelles play pivotal roles in the regulation of ferroptosis, but the mechanisms underlying the contributions of the mitochondria remain poorly defined. Optic atrophy 1 (OPA1) is a mitochondrial dynamin-like GTPase that controls mitochondrial morphogenesis, fusion, and energetics.
View Article and Find Full Text PDFADCK3 is a member of the UbiB family of atypical protein kinases in humans, with homologues in archaea, bacteria, and eukaryotes. In lieu of protein kinase activity, ADCK3 plays a role in the biosynthesis of coenzyme Q10 (CoQ10), and inactivating mutations can cause a CoQ10 deficiency and ataxia. However, the exact functions of ADCK3 are still unclear, and small-molecule inhibitors could be useful as chemical probes to elucidate its molecular mechanisms.
View Article and Find Full Text PDFUnlabelled: Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation.
View Article and Find Full Text PDFSARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases.
View Article and Find Full Text PDFFerroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes.
View Article and Find Full Text PDFIron catalyses the oxidation of lipids in biological membranes and promotes a form of cell death referred to as ferroptosis. Identifying where this chemistry takes place in the cell can inform the design of drugs capable of inducing or inhibiting ferroptosis in various disease-relevant settings. Whereas genetic approaches have revealed underlying mechanisms of lipid peroxide detoxification, small molecules can provide unparalleled spatiotemporal control of the chemistry at work.
View Article and Find Full Text PDFYEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis.
View Article and Find Full Text PDFFerroptosis has been recognized as a unique cell death modality driven by excessive lipid peroxidation and unbalanced cellular metabolism. In this study, we established a protein interaction landscape for ferroptosis pathways through proteomic analyses, and identified choline/ethanolamine phosphotransferase 1 (CEPT1) as a lysophosphatidylcholine acyltransferase 3 (LPCAT3)-interacting protein that regulates LPCAT3 protein stability. In contrast to its known role in promoting phospholipid synthesis, we showed that CEPT1 suppresses ferroptosis potentially by interacting with phospholipases and breaking down certain pro-ferroptotic polyunsaturated fatty acid (PUFA)-containing phospholipids.
View Article and Find Full Text PDFFerroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.
View Article and Find Full Text PDFPhospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFAs) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFAs) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFAs) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis.
View Article and Find Full Text PDFSpatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the transient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion beam secondary ion mass spectrometry imaging ([HO]-GCIB-SIMS) at ≤3 μm resolution using a cryogenic imaging workflow.
View Article and Find Full Text PDFAlthough the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS).
View Article and Find Full Text PDFFerroptosis is a form of programmed cell death that plays a significant role in causing several diseases such as heart attack and heart failure, through alterations in fat, amino acid, and iron metabolism. Comprehending the regulatory mechanisms of ferroptosis signaling is critical because it has a considerable effect on the elderly's mortality. Conversely, age-related changes in substrate metabolism and metabolite levels are recognized to give rise to obesity.
View Article and Find Full Text PDFWe previously identified the natural products isopomiferin and pomiferin as powerful, indirect MYCN-ablating agents. In this work, we expand on their mechanism of action and find that casein kinase 2 (CK2), phosphoinositide 3-kinase (PI3K), checkpoint kinase 1 (CHK1) and serine/threonine protein kinase 38-like (STK38L), as well as STK38, work synchronously to create a field effect that maintains MYCN stability. By systematically inhibiting these kinases, we degraded MYCN and induced cell death.
View Article and Find Full Text PDFThe emerging and powerful field of spatial pharmacology can map the spatial distribution of drugs and their metabolites, as well as their effects on endogenous biomolecules including metabolites, lipids, proteins, peptides, and glycans, without the need for labeling. This is enabled by mass spectrometry imaging (MSI) that provides previously inaccessible information in diverse phases of drug discovery and development. We provide a perspective on how MSI technologies and computational tools can be implemented to reveal quantitative spatial drug pharmacokinetics and toxicology, tissue subtyping, and associated biomarkers.
View Article and Find Full Text PDF