The Cu-free 1,3-dipolar cycloaddition of cyclooctynes and azides is an up-and-coming method in bioorganic chemistry and other disciplines. However, broad application is still hampered by major drawbacks such as poor solubility of the reactants in aqueous media and low reaction rates. It is thus of high demand to devise a fast and user-friendly strategy for the optimization of reaction conditions and reagent design.
View Article and Find Full Text PDFThe intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism.
View Article and Find Full Text PDFThe interferon (IFN)-stimulated gene factor 3 (ISGF3) transcription factor with its Stat1, Stat2, and interferon regulatory factor 9 (IRF9) subunits is employed for transcriptional responses downstream of receptors for type I interferons (IFN-I) that include IFN-α and IFN-β and type III interferons (IFN-III), also called IFN-λ. Here, we show in a murine model of dextran sodium sulfate (DSS)-induced colitis that IRF9 deficiency protects animals, whereas the combined loss of IFN-I and IFN-III receptors worsens their condition. We explain the different phenotypes by demonstrating a function of IRF9 in a noncanonical transcriptional complex with Stat1, apart from IFN-I and IFN-III signaling.
View Article and Find Full Text PDFRecent results indicate a significant contribution of innate immune signaling to maintain mucosal homeostasis, but the precise underlying signal transduction pathways are ill-defined. By comparative analysis of intestinal epithelial cells isolated from conventionally raised and germ-free mice, as well as animals deficient in the adaptor molecules MyD88 and TRIF, the TLR3 and TLR4, as well as the type I and III IFN receptors, we demonstrate significant TLR-mediated signaling under homeostatic conditions. Surprisingly, homeostatic expression of Reg3γ and Paneth cell enteric antimicrobial peptides critically relied on TRIF and, in part, TLR3 but was independent of IFN receptor signaling.
View Article and Find Full Text PDFCharacterising chemical reactions by kinetic analysis is of fundamental importance to experimentally obtain insights into reaction mechanisms. Based on such investigations reactions can be optimised and improved catalysts designed. Enhanced reaction conditions may drastically increase the performance of the reaction in terms of yield and (enantio-) selectivity.
View Article and Find Full Text PDFOn-column reaction gas chromatography combines the power of separation and rapid analysis of reactants and reaction products with screening of reactions in a single step. Not only conversions but the reaction rates at various temperatures can be obtained from single measurements, making this approach superior to the time-consuming measurements typically performed in reaction progress analysis. However, this approach has only been used in the investigation of interconversion processes, rearrangement reactions, and only a few examples of higher-order reactions are known.
View Article and Find Full Text PDFPaneth cell-derived enteric antimicrobial peptides significantly contribute to antibacterial host defense and host-microbial homeostasis. Regulation occurs by enzymatic processing and release into the small intestinal lumen, but the stimuli involved are incompletely understood. Here, the capacity of various microbial and immune stimuli to induce antimicrobial peptide release from small intestinal tissue was systematically evaluated using antibacterial activity testing, immunostaining for Paneth cell granules and mass spectrometry.
View Article and Find Full Text PDFThe study was designed to determine the sensitivity and reproducibility of recovering immunoglobulin (Ig) isotypes (IgG subclasses, IgA, IgE and IgM classes) from dried blood spots (DBS), a methodologic subcomponent of the Upstate KIDS Study. A multiplexed Luminex assay was used for IgG1/2/3/4, IgA and IgM analysis; an ELISA was used for IgE. Plasma samples from de-identified patients were used to compare the Luminex assay with nephelometry, which is routinely used to quantify IgA, IgG and IgM in clinical samples.
View Article and Find Full Text PDFBeilstein J Org Chem
September 2013
A new approach for the investigation of a higher-order reaction by on-column reaction gas chromatography is presented. The reaction and the analytical separation are combined in a single experiment to investigate the Diels-Alder reaction of benzenediazonium-2-carboxylate as a benzyne precursor with various anthracene derivatives, i.e.
View Article and Find Full Text PDFAlzheimer's disease (AD) causes severe impairments in cognitive function but there is evidence that aspects of esthetic perception are somewhat spared, at least in early stages of the disease. People with early Alzheimer's-related dementia have been found to show similar degrees of stability over time in esthetic judgment of paintings compared to controls, despite poor explicit memory for the images. Here we expand on this line of inquiry to investigate the types of perceptual judgments involved, and to test whether people in later stages of the disease also show evidence of preserved esthetic judgment.
View Article and Find Full Text PDFIntestinal ischemia/reperfusion (I/R) injury causes inflammation and tissue damage and is associated with high morbidity and mortality. Uncontrolled activation of the innate immune system through toll-like receptors (Tlr) plays a key role in I/R-mediated tissue damage but the underlying mechanisms have not been fully resolved. Here, we identify post-transcriptional upregulation of the essential Tlr signalling molecule interleukin 1 receptor-associated kinase (Irak) 1 as the causative mechanism for post-ischemic immune hyper-responsiveness of intestinal epithelial cells.
View Article and Find Full Text PDFNitric oxide (NO) defends against intracellular pathogens, but its synthesis must be regulated due to cell and tissue toxicity. During infection, macrophages import extracellular arginine to synthesize NO, generating the byproduct citrulline. Accumulated intracellular citrulline is thought to fuel arginine synthesis catalyzed by argininosuccinate synthase (Ass1) and argininosuccinate lyase (Asl), which would lead to abundant NO production.
View Article and Find Full Text PDFNovel 3-(perfluoroalkanoyl)-(1R)-camphorate nickel complexes immobilized to poly(dimethylsiloxane) phases are presented. Immobilized 3-(perfluoroalkanoyl)-(1R)-camphorate nickel complexes with a trifluoromethyl (CF(3); nickel(II)-bis[(1R,4S)-3-trifluoromethanoyl-10-propylenoxycamphor]-polysiloxane Ni(tfpc)(2)@PS) and a heptafluoropropyl-substituent (C(3)F(7); nickel(II)-bis[(1R,4S)-3-heptafluorobutanoyl-10-propylenoxycamphor]-polysiloxane Ni(hfpc)(2)@PS) were synthesized, characterized and immobilized to polysiloxane. Ni(hfpc)(2)@PS was immobilized with a selector content of 38% and their enantioseparation ability was compared to selector concentrations of 4% and 20%.
View Article and Find Full Text PDFRotavirus is a major cause of diarrhea worldwide and exhibits a pronounced small intestinal epithelial cell (IEC) tropism. Both human infants and neonatal mice are highly susceptible, whereas adult individuals remain asymptomatic and shed only low numbers of viral particles. Here we investigated age-dependent mechanisms of the intestinal epithelial innate immune response to rotavirus infection in an oral mouse infection model.
View Article and Find Full Text PDFThe intestinal mucosa faces the challenge of regulating the balance between immune tolerance towards commensal bacteria, environmental stimuli and food antigens on the one hand, and induction of efficient immune responses against invading pathogens on the other hand. This regulatory task is of critical importance to prevent inappropriate immune activation that may otherwise lead to chronic inflammation, tissue disruption and organ dysfunction. The most striking example for the efficacy of the adaptive nature of the intestinal mucosa is birth.
View Article and Find Full Text PDFThe postnatal period represents a particularly dynamic phase in the establishment of the host-microbial homeostasis. The sterile protected intestinal mucosa of the fetus becomes exposed to and subsequently colonized by a complex and diverse bacterial community. Both, the exposure to microbial ligands and the bacterial colonization have been described to differ between neonates born vaginally or by cesarean delivery.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2011
Type I and type III IFNs bind to different cell-surface receptors but induce identical signal transduction pathways, leading to the expression of antiviral host effector molecules. Despite the fact that type III IFN (IFN-λ) has been shown to predominantly act on mucosal organs, in vivo infection studies have failed to attribute a specific, nonredundant function. Instead, a predominant role of type I IFN was observed, which was explained by the ubiquitous expression of the type I IFN receptor.
View Article and Find Full Text PDFHuman fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response.
View Article and Find Full Text PDFPhosphorylation of transcription factor STAT-1 on Y701 regulates subcellular localization whereas phosphorylation of the transactivating domain at S727 enhances transcriptional activity. In this study, we investigate the impact of STAT-1 and the importance of transactivating domain phosphorylation on the induction of peptide-specific CTL in presence of the TLR9-dependent immune adjuvant IC31. STAT-1 deficiency completely abolished CTL induction upon immunization, which was strongly reduced in animals carrying the mutation of the S727 phospho-acceptor site.
View Article and Find Full Text PDFProduction of type I interferons (IFN-I, mainly IFNalpha and IFNbeta) is a hallmark of innate immune responses to all classes of pathogens. When viral infection spreads to lymphoid organs, the majority of systemic IFN-I is produced by a specialized "interferon-producing cell" (IPC) that has been shown to belong to the lineage of plasmacytoid dendritic cells (pDC). It is unclear whether production of systemic IFN-I is generally attributable to pDC irrespective of the nature of the infecting pathogen.
View Article and Find Full Text PDFInfection of cells and mice with Listeria monocytogenes stimulates production of type I interferons (IFN). These in turn sensitise the Listeria host to lethal sequelae of infection with these bacteria. Here, we summarise recent findings on the production and biological effects of type I IFN in the course of L.
View Article and Find Full Text PDFType I IFN (IFN-I) signaling is detrimental to cells and mice infected with Listeria monocytogenes. In this study, we investigate the impact of IFN-I on the activity of listeriolysin O (LLO), a pore-forming toxin and virulence protein released by L. monocytogenes.
View Article and Find Full Text PDFMurine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susceptible to death upon infection than wild-type cells.
View Article and Find Full Text PDF