Influenza B virus (FLUBV) poses a significant infectious threat, with frequent vaccine mismatch limiting its effectiveness. Our previous work investigated the safety and efficacy of modified live attenuated FLUBV vaccines with rearranged genomes (FluB-RAM and FluB-RANS) or a temperature-sensitive PB1 segment with a C-terminal HA tag (FluB-att). In this study, we compared the immune responses of female and male DBA/2J mice vaccinated with these vaccines, including versions containing a chimeric HA segment with an N-terminal IgA-inducing peptide (IGIP).
View Article and Find Full Text PDFThe pandemic of severe acute respiratory syndrome coronavirus 2 (SARS2) affected the geriatric population. Among research models, Golden Syrian hamsters (GSH) are one of the most representative to study SARS2 pathogenesis and host responses. However, animal studies that recapitulate the effects of SARS2 in the human geriatric population are lacking.
View Article and Find Full Text PDFInfluenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza.
View Article and Find Full Text PDFInfluenza viruses are considered prominent pathogens of humans and animals that are extensively investigated because of public health importance. Plasmid-based reverse genetics is a fundamental tool that facilitates the generation of genetically modified viruses from a cDNA copy. The ability to rescue viruses enables researchers to understand different biological characteristics including IV replication, pathogenesis, and transmission.
View Article and Find Full Text PDFInfluenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness has recently come into question.
View Article and Find Full Text PDFSeasonal influenza A virus (IAV) infections are among the most important global health problems. FDA-approved antiviral therapies against IAV include neuraminidase inhibitors, M2 inhibitors, and polymerase inhibitor baloxavir. Resistance against adamantanes (amantadine and rimantadine) is widespread as virtually all IAV strains currently circulating in the human population are resistant to adamantanes through the acquisition of the S31N mutation.
View Article and Find Full Text PDFTransmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths and declining economies around the world. K18-hACE2 mice develop disease resembling severe SARS-CoV-2 infection in a virus dose-dependent manner. The relationship between SARS-CoV-2 and the intestinal or respiratory microbiome is not fully understood.
View Article and Find Full Text PDFInfluenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children, and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of an HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable.
View Article and Find Full Text PDFInfluenza B viruses (IBV) circulate annually, with young children, the elderly and immunocompromised individuals being at high risk. Yearly vaccinations are recommended to protect against seasonally influenza viruses, including IBV. Live attenuated influenza vaccines (LAIV) provide the unique opportunity for direct exposure to the antigenically variable surface glycoproteins as well as the more conserved internal components.
View Article and Find Full Text PDFLive attenuated influenza virus (LAIV) vaccines elicit a combination of systemic and mucosal immunity by mimicking a natural infection. To further enhance protective mucosal responses, we incorporated the gene encoding the IgA-inducing protein (IGIP) into the LAIV genomes of the cold-adapted A/Leningrad/134/17/57 (H2N2) strain (caLen) and the experimental attenuated backbone A/turkey/Ohio/313053/04 (H3N2) (OH/04). Incorporation of IGIP into the caLen background led to a virus that grew poorly in prototypical substrates.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the defining global health emergency of this century. GC-376 is a M inhibitor with antiviral activity against SARS-CoV-2 in vitro. Using the K18-hACE2 mouse model, the in vivo antiviral efficacy of GC-376 against SARS-CoV-2 was evaluated.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the defining global health emergency of this century. GC-376 is a M inhibitor with antiviral activity against SARS-CoV-2 . Using the K18-hACE2 mouse model, the antiviral efficacy of GC-376 against SARS-CoV-2 was evaluated.
View Article and Find Full Text PDFInfluenza B virus is a respiratory pathogen that affects more severely the pediatric and elderly populations. There are two lineages of influenza B virus that seem to have differential predilection for age groups. Both lineages can co-circulate during the influenza season however one is usually more prominent than the other depending on the season.
View Article and Find Full Text PDFInfluenza viruses are among the most significant pathogens of humans and animals. Reverse genetics allows for the study of molecular attributes that modulate virus host range, virulence and transmission. The most common reverse genetics methods use bi-directional vectors containing a host RNA polymerase (pol) I promoter to produce virus-like RNAs and a host RNA pol II promoter to direct the synthesis of viral proteins.
View Article and Find Full Text PDFVaccination of hens against influenza leads to the transfer of protective maternally-derived antibodies (MDA) to hatchlings. However, little is known about the transfer of H7N3 vaccine-induced MDA. Here, we evaluated transfer, duration, and protective effect of MDA in chickens against H7N3 HPAIV.
View Article and Find Full Text PDFBackground: Newcastle disease (ND), which is caused by infections of poultry species with virulent strains of Avian orthoavulavirus-1, also known as avian paramyxovirus 1 (APMV-1), and formerly known as Newcastle disease virus (NDV), may cause neurological signs and encephalitis. Neurological signs are often the only clinical signs observed in birds infected with neurotropic strains of NDV. Experimental infections have shown that the replication of virulent NDV (vNDV) strains is in the brain parenchyma and is possibly confined to neurons and ependymal cells.
View Article and Find Full Text PDFInfluenza virus infections continue to pose a major public health threat worldwide associated with seasonal epidemics and sporadic pandemics. Vaccination is considered the first line of defense against influenza. Live attenuated influenza virus vaccines (LAIVs) may provide superior responses compared to inactivated vaccines because the former can better elicit a combination of humoral and cellular responses by mimicking a natural infection.
View Article and Find Full Text PDFHere, we present the draft genome sequences of three sp. strains with multidrug-resistant properties, isolated in 2015 from a pigeon and two chickens in Pakistan.
View Article and Find Full Text PDFHere, we present the draft genome sequences of five multidrug-resistant novel species strains isolated from a pigeon, a duck, and chickens from Nigeria in 2009.
View Article and Find Full Text PDFInactivation of Newcastle disease virus (NDV) has been routinely achieved with heat, β-propiolactone, binary ethylenimine, ultraviolet light and formalin. However, these strategies have not been tested for cell surface ligand or receptor phenotype in viral-infected chicken immune cells. To study the capacity of fixation buffers to preserve surface markers while inactivating NDV, a primary splenocyte culture was infected with NDV and incubated with a commercial intracellular fixation buffer (ICB), formulated with 4% formaldehyde.
View Article and Find Full Text PDFHighly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.
View Article and Find Full Text PDFGlobally, poultry producers report that birds well-vaccinated for Newcastle disease (ND) often present clinical disease and mortality after infection with virulent strains of Newcastle disease (vNDV), which is contrary to what is observed in experimental settings. One hypothesis for this discrepancy is that the birds in the field may be exposed to multiple successive challenges with vNDV, rather than one challenge dose, and that the repeated infection may overwhelm the immune system and neutralizing antibodies available to prevent clinical disease. In this study, we evaluated this hypothesis under highly controlled conditions.
View Article and Find Full Text PDFReverse genetics allows for the generation of recombinant viruses or vectors used in functional studies, vaccine development, and gene therapy. This technique enables genetic manipulation and cloning of viral genomes, gene mutation through site-directed mutagenesis, along with gene insertion or deletion, among other studies. An in vitro infection-based system including the highly attenuated vaccinia virus Ankara strain expressing the T7 RNA polymerase from bacteriophage T7, with co-transfection of three helper plasmids and a full-length cDNA plasmid, was successfully developed to rescue genetically modified Newcastle disease viruses in 1999.
View Article and Find Full Text PDFMore effective vaccines are needed to control avian diseases. The use of chicken interferon gamma (chIFNγ) during vaccination is a potentially important but controversial approach that may improve the immune response to antigens. In the present study, three different systems to co-deliver chIFNγ with Newcastle disease virus (NDV) antigens were evaluated for their ability to enhance the avian immune response and their protective capacity upon challenge with virulent NDV.
View Article and Find Full Text PDF